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1 Introduction

For more than two decades, environmental law and regulation was dominated
by command-and-control approaches typically either mandated pollution con-
trol technologies or inflexible discharge standards. In the 1980s policy makers
increasingly explored market-based environmental policy instruments. Such
mechanisms should provide economic incentives for firms and individuals to
carry out cost-effective pollution control. In particular, in a market-based sys-
tem the theory is that participants trade permits thereby minimizing the cost
of pollution control to society. The source of these cost savings is the capacity
of economic instruments to take advantage of the large differentials abatement
costs across polluters. 1 In a cap-and-trade system, regulators set a target level
for emissions (i.e. the cap) and issue permits which are allocated according to
different criteria (auctioning, grandfathering, etc.) to the installations partic-
ipating in the program. To enforce the cap, a penalty is levied for each unit
of pollutant emitted outside the limits of a given compliance period. Firms
may either reduce their own pollution or purchase emission permits in order
to ensure compliance. This transfer of permits by trading is the core principle
leading to the minimization of the costs caused by regulation; firms that can
easily reduce emissions will do so, while those that cannot buy permits. Cap-
and-trade systems continue today to be at the center of actions linked with
global climate change. In 2005, in an effort to meet targets under the Kyoto
Protocol, European policy makers launched the so-called European Emission
Trading Scheme (EU ETS). Most recently, cap-and-trade systems have been
discussed as a possible means to reduce carbon dioxide and other greenhouse
gas emissions in the U.S.

Given the prevalence of cap-and-trade schemes, a clear understanding of the
carbon pricing mechanism is obvious. Only a handful of papers in the liter-
ature are devoted to permit pricing and we briefly review those related to
our paper. One of the first references to market-based techniques for deal-
ing with pollution problems can be found in the seminal works of Coase [8]
and Dales [9]. Based on such an idea, Montgomery [14] provides, in a de-
terministic setting, a rigorous theoretical justification of how a market-based
approach leads to the efficient allocation of abatement costs across various
pollution sources. Recently, in an effort to bridge the gap between theory and
observed market-price behavior, an increasing number of empirical studies
have investigated the historical time series of the price of emission permits.
In the context of the first EU ETS phase (2005-2007) the following classes of
processes have been applied to the permit price series: jump-diffusion mod-

1 We refer to Baumol and Oates [2] for a complete discussion on market-based
policy measures, and to Taschini [17] for an introductory review on fundamental
concepts in environmental economics.
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els (Wagner [19], Daskalakis et al. [10]), GARCH-models (Benz and Trück
[3] and Wagner [19]), regime-switching models (Wagner [19], Benz and Trück
[3]), Mix-Normal GARCH-models (Paolella and Taschini [15]) and two-factor
models (Cetin and Verschuere [6]). Other authors support the argument that
the permit price responds to macroeconomic fundamentals and try to explain
the price evolution of emission permits in terms of electricity, gas, oil and coal
prices and weather effects (cf. Hintermann [12] and Mansanet-Bataller et al.
[13]).

A theoretical strand of literature evolved recently describing the price dy-
namics of emission permits by tailor-made stochastic equilibrium models. Al-
lowing for stochastic production costs, revenues from selling produced goods
and emission quantities, Carmona et al. [4] showed in a general setting that
the price of emission permits equals the discounted penalty multiplied by the
probability of the event of shortage (i.e. the aggregated cumulative emissions
exceed total number of permits). The models of Chesney and Taschini [7] and
Grüll and Kiesel [11] specify the process for the cumulative emissions in the
framework of Carmona et al. [4] by assuming that the firms’ emission rate fol-
lows a geometric Brownian motion. This means that the cumulative emissions
are described by the integral over a geometric Brownian motion for which no
closed-form density is available. The models of Chesney and Taschini [7] and
Grüll and Kiesel [11] differ in the way the cumulative emissions are approx-
imated. The linear approximation approach of Chesney and Taschini [7] has
the shortcoming that the moments of the approximated cumulative emissions
do not match the true ones. Grüll and Kiesel [11] overcome this problem by
applying a moment matching approach.
However, so far this type of literature including the above papers focused on
showing theoretical properties of emission trading systems rather than cali-
brate the model parameters to historical time series. Carmona et al. [4] analyze
the effect of windfall profits, Chesney and Taschini [7] investigate the effect of
asymmetric information on the permit price and Grüll and Kiesel [11] provide
a theoretical sound discussion about the permit price slump in 2006 in the EU
ETS.

With the objective to provide tractable pricing models for options on emis-
sion permits, Carmona and Hinz [5] were the first to address the complexity
of the calibration of the equilibrium model of Carmona et al. [4]. The authors
introduce a simple risk-neutral reduced-form model for the price of emission
permits and calibrate it to historical data. Our contribution extends Carmona
and Hinz [5] efforts by deriving estimation methods for the calibration to real
data of those competing equilibrium models introduced in this paper. Further-
more, for the first time in the literature, we compare in-sample performances
of reduced-form models including into the analysis standard continuous-time
stochastic processes (i.e. geometric Brownian motion and normal Inverse Gaus-
sian). Finally, we prove the existing relationship between the reduced-form
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model of Carmona and Hinz and the full-model of Chesney and Taschini.

The present paper is organized as follows. Section 2 introduces the equilib-
rium model of Chesney and Taschini [7], its modification proposed by Grüll
and Kiesel [11], and the model of Carmona and Hinz [5]. In section 3 we pro-
pose different approximation approaches with the aim of obtaining a handy
stochastic differential equation which is flexible enough to describe the histor-
ical price evolution of emission permits. We also show the analytical relation-
ship between the models of Chesney and Taschini [7] and Carmona and Hinz
[5]. Section 4 investigates historical model calibrations and compares reduced-
form models and standard continuous-time stochastic models performances.
Section 5 concludes.

2 Equilibrium Models

In this section we introduce the full equilibrium model of Chesney and Taschini
[7] (hereafter CT), its modification proposed by Grüll and Kiesel [11] (hereafter
GK), and the full equilibrium model of Carmona et al. [4] (hereafter CFHP).
Also, we present the reduced-form model of Carmona and Hinz [5] (hereafter
CH). For a comprehensive overview of other recent attempts at developing
valid price models for emission permits we refer to Taschini [17].

Both the models of CT and GK assume that the firms’ pollution emission rate
Qt follows a geometric Brownian motion

dQt = Qt[µdt+ σdWt].

Therefore, the cumulative emissions in [0, t] are given by

q[0,t] =
∫ t

0
Qsds.

Let us also introduce P as the penalty that has to be paid for each emis-
sion unit that is not covered by a permit at the compliance date T . Also, N
is the total amount of permits allocated by the policy regulator to relevant
companies, i.e. the cap.

The models of CT and GK differ in the way the cumulative emissions are
approximated. CT approximate the cumulative emissions linearly

q[t1,t2] ≈ q̃CT[t1,t2] = Qt2(t2 − t1)

= Qt1 exp

{
ln(t2 − t1) +

(
µ− σ2

2

)
(t2 − t1) + σ

√
t2 − t1Z

}
,
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where Z is a standard normally distributed random variable. GK uses a mo-
ment matching approach for approximation that yields

q[t1,t2] ≈ q̃GK[t1,t2] = Qt1 exp

ln

 α2
t2−t1√

2βt2−t1

+

√√√√ln

(
2βt2−t1
α2
t2−t1

)
Z

 ,
where

αt2−t1 =


1
µ

(
eµ(t2−t1) − 1

)
if µ 6= 0

t2 − t1 if µ = 0
(1)

βt2−t1 =


µe(2µ+σ2)(t2−t1)+µ+σ2−(2µ+σ2)eµ(t2−t1)

µ(µ+σ2)(2µ+σ2)
if µ 6= 0

1
σ4

(
eσ

2(t2−t1) − 1
)

if µ = 0
(2)

CFHP prove in a general setting that the futures price of emission permits at
time t is given by

F (t, T ) = P · P
(
q[0,T ] > N |Ft

)
, (3)

where q[0,T ] is the random variable that denotes the aggregated cumulative
emissions of all relevant companies at time T .

Addressing the problem of pricing options contracts on emission permits, in
a recent paper CH develop a reduced-form model and propose a risk-neutral
price dynamics of emission permits. Under the risk-neutral measure Q, the
futures permit price F (t, T ) is modeled as

F (t, T ) = P ·Q
(

Γ0 exp

{∫ T

0
σsdWs −

1

2

∫ T

0
σ2
sds

}
> 1 | Ft

)
,

where Γ0 ∈ (0,∞), and σ(·) is a continuous square integrable deterministic
function. CH prove that the futures permit price under the historical measure
P for some fixed h ∈ R, is given by

F (t, T ) = P · P
(

Γ0 exp

{∫ T

0
σs(dWs + hds)− 1

2

∫ T

0
σ2
sds

}
> 1 | Ft

)

= P · P
(

Γ0 exp

{∫ T

0
σsdWs −

1

2

∫ T

0
(σ2

s − 2hσs)ds

}
> 1 | Ft

)
. (4)

Comparing Equations (3) and (4), the aggregated cumulative emissions nor-
malized with respect to the cap are described by the following process

q[0,T ]

N
= Γ0 exp

{∫ T

0
σsdWs −

1

2

∫ T

0
(σ2

s − 2hσs)ds

}
. (5)
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It is important to notice that the cumulative emissions under such a speci-
fication do not satisfy two important (and quite natural) properties of fund
pollutant. 2 They are neither additive in time (i.e. q[0,T ] 6= q[0,t]+q[t,T ] for t < T )
nor do they strictly increase over time. However, this assumption makes com-
putations in CH much easier and yields a tractable option pricing model. Fol-
lowing the definition of CH, we call this type of simplified equilibrium models
reduced-form models. Based on Equation (5), under the risk-neutral measure
the futures price of emission permits F (t, T ) divided by the penalty P satisfies
the following stochastic differential equation (SDE)

dat = Φ′(Φ−1(at))

√
β

T − t
dWt,

where at = F (t,T )
P

. Under the historical measure, at satisfies the following SDE

dat = Φ′(Φ−1(at))

√
β

T − t
(dWt + hdt) (6)

= Φ′(Φ−1(at))

√ β

T − t
dWt + h

√
β

T − t
dt

 . (7)

By means of discretization of this SDE and using the closed-form maximum-
likelihood estimation reported by CH, the parameters of this reduced-form
model can be estimated.

3 Estimation methods for full models

The aim of this section is to determine sufficiently flexible dynamics of the price
of emission permits to be then calibrated using market data. We propose and
discuss three different approaches for approximating the model of CT and one
for approximating the model of GK, respectively. Each approximation allows
us to derive possible estimation methods. Furthermore, we employ them to
investigate how the models introduced in Section 2 are related to each other.

The derivation of the price dynamics is done in two steps. First, we derive the
theoretical price of emission permits at time t in the framework of CT, assum-
ing that we know the emission rate at time t and the aggregated cumulative
emissions until t (cf. Lemma 1). The SDE for the price dynamics is obtained
in a second step by treating the emission rate and cumulative emissions in

2 Cap-and-trade schemes are typically implemented to curb pollutants that need
total volume control because of the existence of a threshold in the flow or stock of
them - see Tietenberg [18].
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Lemma 1 as random variables.

Lemma 1 (Permit price in the model of Chesney and Taschini).
The time-t permit price divided by the penalty is given by

at = Φ

− ln
(
N−q[0,t]
(T−t)·Qt

)
+
(
µ− σ2

2

)
(T − t)

σ
√
T − t

 .
In particular, we have

a0 = Φ

− ln
(

N
T ·Q0

)
+
(
µ− σ2

2

)
T

σ
√
T

 .

Proof :
Approximating the cumulative emissions linearly, i.e. q[t,T ] ≈ (T − t) ·QT , and
letting Z ∼ N(0, 1) we get

at = P
(
(T − t) ·QT > N − q[0,t]|Ft

)
= P

(
(T − t) ·Qt exp

{(
µ− σ2

2

)
(T − t) + σ

√
T − tZ

}
> N − q[0,t]|Ft

)

= P
(

exp

{(
µ− σ2

2

)
(T − t) + σ

√
T − tZ

}
>

N − q[0,t]

(T − t) ·Qt

|Ft
)

= Φ

− ln
(
N−q[0,t]
(T−t)·Qt

)
+
(
µ− σ2

2

)
(T − t)

σ
√
T − t

 .
♦

Deriving an SDE for the permit price in Lemma 1 yields a very complicated
expression that cannot be used for model calibration in practice. Therefore,
we propose three different approaches for the approximation of the random

variable
N−q[0,t]
(T−t)·Qt in Lemma 1. By means of the first approximation approach,

we show the relationship between the models of CT and CH. The second and
third approximation approaches are proposed for the purpose of getting a
more tractable model calibration.

Approximation 1: Assume that the emission rate follows a geometric Brow-
nian motion with a deterministic time-dependent drift µs and a diffusion
coefficient σs. Let us define the “longness” of the market as the number
of remaining permits divided by the emissions in the remaining time pe-

riod given the current emission rate, i.e.
N−q[0,t]
(T−t)·Qt . Values greater (less) than

1 correspond to a situation where the emission market is long (short) in

7



permits. Assume that this “longness” follows a geometric Brownian motion

N − q[0,t]

(T − t) ·Qt

≈ N

T ·Q0

exp

{∫ t

0

(
µ̃s −

σ̃2
s

2

)
ds+

∫ t

0
σ̃sdWs

}

where µ̃s and σ̃s are deterministic functions.

Theorem 2 (SDE for approximation approach 1).

(a) Let Qt be an emission rate with time-dependent drift and volatility, i.e.

dQt = Qt[µtdt+ σtdWt]

for deterministic functions µt and σt.
Then in the model of CT the permit price divided by the penalty is given
by

at = Φ

− ln
(
N−q[0,t]
(T−t)·Qt

)
+
∫ T
t

(
µs − σ2

s

2

)
ds√∫ T

t σ
2
sds

 .
(b) Approximate the “longness” by

N − q[0,t]

(T − t) ·Qt

≈ N

T ·Q0

exp

{∫ t

0

(
µ̃s −

σ̃2
s

2

)
ds+

∫ t

0
σ̃sdWs

}
,

where µ̃s and σ̃s are deterministic functions. Then the dynamics of the
permit price in the model of CT are given by

dat = −Φ′ (Φ−1(at))√∫ T
t σ

2
sds

µ̃t + µt −
σ̃2
t

2
− σ2

t

2
+

1

2

σ̃2
t − σ2

t√∫ T
t σ

2
sds

Φ−1(at)

 dt+ σ̃tdWt

 .
(c) The model of CT with time-dependent emission rate can be transformed

into the model of CH by setting

σ̃t = − σt = −
√
β(T − t)β−1,

µ̃t = − µt + σt(σt − h).

Proof :

(a) Follows directly from Lemma 1 andQt = Q0 exp
{∫ t

0

(
µs − σ2

s

2

)
ds+

∫ t
0 σsdWs

}
.
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(b) Approximation 2 and part (a) yield

at = Φ

− ln
(

N
T ·Q0

exp
{∫ t

0

(
µ̃s − σ̃2

s

2

)
ds+

∫ t
0 σ̃sdWs

})
+
∫ T
t

(
µs − σ2

s

2

)
ds√∫ T

t σ
2
sds


= Φ

− ln
(

N
T ·Q0

)
−
∫ t
0

(
µ̃s − σ̃2

s

2

)
ds−

∫ t
0 σ̃sdWs +

∫ T
t

(
µs − σ2

s

2

)
ds√∫ T

t σ
2
sds


= Φ

− ln
(

N
T ·Q0

)
−
∫ t
0

(
µ̃s − σ̃2

s

2

)
ds−

∫ t
0 σ̃sdWs +

∫ T
0

(
µs − σ2

s

2

)
ds−

∫ t
0

(
µs − σ2

s

2

)
ds√∫ T

t σ
2
sds


= Φ

Φ−1(a0)
√∫ T

0 σ2
sds−

∫ t
0

(
µ̃s + µs − σ̃2

s

2
− σ2

s

2

)
ds−

∫ t
0 σ̃sdWs√∫ T

t σ
2
sds


:= Φ (Xt) := Φ

(
zt√
nt

)
.

We have that

dat = dΦ (Xt) = Φ′(Xt)dXt +
1

2
Φ′′(Xt)d[X]t

= Φ′(Xt)dXt −
1

2
XtΦ

′(Xt)d[X]t

= Φ′(Xt)
[
dXt −

1

2
Xtd[X]t

]
,

where

dnt = − σ2
t dt,

dzt = −
(
µ̃t + µt −

σ̃2
t

2
− σ2

t

2

)
dt− σ̃tdWt,

dXt =
1
√
nt
dzt −

1

2

Xt

nt
dnt

= − 1√∫ T
t σ

2
sds

(
µ̃t + µt −

σ̃2
t

2
− σ2

t

2

)
dt− σ̃t√∫ T

t σ
2
sds

dWt +
1

2

σ2
t∫ T

t σ
2
sds

Xtdt,

d[X]t =
σ̃2
t∫ T

t σ
2
sds

dt.

Thus

dXt −
1

2
Xtd[X]t = − 1√∫ T

t σ
2
sds

(
µ̃t + µt −

σ̃2
t

2
− σ2

t

2

)
dt− σ̃t√∫ T

t σ
2
sds

dWt

− 1

2

σ̃2
t − σ2

t∫ T
t σ

2
sds

Xtdt.
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(c) The model of CT can be transformed into the model of CH equating the
coefficients of “dt” and “dWt”

− σ̃t√∫ T
t σ

2
sds

=

√
β

T − t
, (8)

and

− 1√∫ T
t σ

2
sds

(
µ̃t + µt −

σ̃2
t

2
− σ2

t

2

)
= h

√
β

T − t
. (9)

By setting σ̃2
t = σ2

t and then rearranging Equation (8) we obtain the following
PDE

σ̃2
t ·
T − t
β

=
∫ T

t
σ̃2
sds.

Hence for β > 0 we have σ̃2
t = β(T − t)β−1 = σ2

t . Thus

σ̃t = −σt = −
√
β(T − t)β−1.

Applying σ̃2
t = σ2

t to Equation (9) and then equating (8) and (9) yields

µ̃t + µt − σ̃2
t = hσ̃t

which completes the proof. ♦

Approximation 2: A linear approximation in the model of CT leads to

ln
(
N−q[0,t]
(T−t)·Qt

)
= ln

(
N−t·Qt

(T−t)·Qt

)
. Now, approximating Qt in the nominator by

its expected value E [Qt] = Q0e
µt yields

ln

(
N − q[0,t]

(T − t) ·Qt

)
≈ ln

(
N − t · E [Qt]

(T − t) ·Qt

)
.

Theorem 3 (SDE for approximation approach 2).

Using the approximation ln
(
N−q[0,t]
(T−t)·Qt

)
≈ ln

(
N−t·E[Qt]
(T−t)·Qt

)
, the dynamics of the

permit price in the model of CT are given by

dat = −Φ′ (Φ−1(at))√
T − t

[(
(1 + µt)Q0e

µt

σ(N − t ·Q0eµt)
− 1

T − t

)
dt+ dWt

]
.

Proof :
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Using the approximation q[0,t] = t ·Qt, we get

at = Φ

− ln
(
N−t·Qt

(T−t)·Qt

)
+
(
µ− σ2

2

)
(T − t)

σ
√
T − t


= Φ

− ln (N − t ·Qt) + ln(T − t) + ln(Qt) +
(
µ− σ2

2

)
(T − t)

σ
√
T − t


= Φ

− ln (N − t ·Qt) + ln(T − t) + ln(Q0) +
(
µ− σ2

2

)
t+ σWt +

(
µ− σ2

2

)
(T − t)

σ
√
T − t


= Φ

− ln (N − t ·Qt) + ln(T − t) + ln(Q0) + σWt +
(
µ− σ2

2

)
T

σ
√
T − t


= Φ

Φ−1(a0)σ
√
T + ln

(
N
T

)
− ln (N − t ·Qt) + ln(T − t) + σWt

σ
√
T − t

 .
Now, using the approximationQt ≈ E [Qt] = Q0e

µt and plugging in ln (N − t ·Qt) ,
yields

at = Φ

Φ−1(a0)σ
√
T + ln

(
N
T

)
− ln (N − t ·Q0e

µt) + ln(T − t) + σWt

σ
√
T − t


:= Φ (Xt) := Φ

 z(t)√
n(t)

 .
The differential of the normalized permit price is

dat = dΦ (Xt) = Φ′(Xt)dXt +
1

2
Φ′′(Xt)d[X]t

= Φ′(Xt)dXt −
1

2
XtΦ

′(Xt)d[X]t

= Φ′(Xt)
[
dXt −

1

2
Xtd[X]t

]
,

where

dnt = − σ2dt,

dzt =

(
(1 + µt)Q0e

µt

N − t ·Q0eµt
− 1

T − t

)
dt− σdWt,

dXt =
1
√
nt
dzt −

1

2

Xt

nt
dnt

=
1

σ
√
T − t

(
(1 + µt)Q0e

µt

N − t ·Q0eµt
− 1

T − t

)
dt− 1√

T − t
dWt +

1

2

Xt

T − t
dt,

d[X]t =
1

T − t
dt.
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Thus

dXt −
1

2
Xtd[X]t =

(
1

σ
√
T − t

(1 + µt)Q0e
µt

N − t ·Q0eµt
− 1

T − t

)
dt− 1√

T − t
dWt.

♦

Approximation 3: Bearing in mind that T − t is an affine function and that
the number of remaining permits is approximately an affine function in t,
we can use the following approximation for small positive ∆

N − q[0,t+∆]

N − q[0,t]

T − t
T − (t+ ∆)

≈ 1.

We apply approximation 3 both to the model of CT (cf. Theorem 4) and to
the model of GK model (cf. Theorem 5).

Theorem 4 (SDE for approximation approach 3).

Let
N−q[0,t+∆]

N−q[0,t]
T−t

T−(t+∆)
≈ 1 for small positive ∆. Then the following difference

is approximately standard normally distributed in the model of CT

1√
∆

(
Φ−1(at+∆)

√
T − (t+ ∆)− Φ−1(at)

√
T − t

)
. (10)

Proof :
By Lemma 1

Φ−1(at)
√
T − t =

1

σ
·
(
− ln

(
N − q[0,t]

(T − t) ·Qt

)
+

(
µ− σ2

2

)
(T − t)

)
.

Thus,

Φ−1(at)
√
T − t− Φ−1(at+∆)

√
T − (t+ ∆)

=
1

σ
·
(

ln

(
N − q[0,t+∆]

N − q[0,t]

· T − t
T − (t+ ∆)

)
− ln

(
Qt+∆

Qt

)
+

(
µ− σ2

2

)
∆

)

=
1

σ
·
(

ln

(
N − q[0,t+∆]

N − q[0,t]

· T − t
T − (t+ ∆)

)
− σW∆

)
.

Assuming
N−q[0,t+∆]

N−q[0,t]
· T−t
T−(t+∆)

≈ 1 completes the proof. ♦

Theorem 5 (Discretized SDE for the model of Grüll and Kiesel).

Let
N−q[0,t+∆]

N−q[0,t]

1
µ

(eµ(T−t)−1)
1
µ

(eµ(T−(t+∆))−1)
≈ 1 for small positive ∆ and let Z ∼ N(0, 1).

Then
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(1) The dynamics of the permit price in the model of GK are described by the
following discretized SDE

zt := Φ−1(at+∆)
√
T − (t+ ∆)− Φ−1(at)

√
T − t

∼ N

 ∆√
b(µ, σ2)

(
µ− σ2

2
+
b(µ, σ2)

2

)
,
σ2∆

b(µ, σ2)

 ,
where

b(µ, σ2) =
µ(µ+ σ2)

(
e2µ+σ2 − eµ

)
µe2µ+σ2 + µ+ σ2 − (2µ+ σ2) eµ

− 2
µeµ

eµ − 1
.

(2) Let m and s2 be the sample mean and the sample variance of the data set
{zt}. Then the parameter estimate σ̂2 is given by the solution of

b

(
m

s
√

∆
σ̂ +

1

2

(
1− ∆

s2

)
σ̂2, σ̂2

)
=

∆

s2
σ̂2, (11)

and the estimate µ̂ := µ̂(σ̂2) is given by

µ̂ =
m

s
√

∆
σ̂ +

1

2

(
1− ∆

s2

)
σ̂2. (12)

Proof :
(a) The permit price in the model of GK is given by

at = Φ

− ln
(
N−q[0,t]
Qt

)
+ g(T − t)√

h(T − t)

 , (13)

where

g(T − t) = ln

(
α2
T−t√

2βT−t

)
, and h(T − t) = ln

(
2βT−t
α2
T−t

)
. (14)

Parameters αT−t and βT−t are given in Equation (1) and (2), respectively.
The Taylor expansion around 1 yields

h(τ) = h(1) + h′(1)(τ − 1) +
1

2
h′′(ξ)(ξ − 1)2

for ξ between 1 and τ . It can be shown that the error term is sufficiently small
for parameter combinations (µ, σ2) that are in scope. Furthermore it can be
shown that h(1) − h′(1) ≈ 0. Therefore, in the following we work with the
approximation

h(T − t) ≈ b(µ, σ2)(T − t),
where

b(µ, σ2) = h′(1) =
β′1
β1

− 2
α′1
α1

.
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Thus

h(T − t) ≈ b(µ, σ2)(T − t)⇔ 2βT−t
α2
T−t
≈ eb(µ,σ

2)(T−t)

⇔
√

2βT−t ≈
√
eb(µ,σ2)(T−t)αT−t

⇔
α2
T−t√

2βT−t
≈ αT−t√

eb(µ,σ2)(T−t)

⇔ g(T − t) ≈ ln(αT−t)−
1

2
b(µ, σ2)(T − t).

Inserting the approximation functions for g(·) and h(·) into Equation (13)
yields

Φ−1(at) =
1√

b(µ, σ2)(T − t)

[
− ln

(
N − q[0,t]

Qt

)
+ ln(αT−t)−

1

2
b(µ, σ2)(T − t)

]
,

which is equivalent to

Φ−1(at)
√
T − t =

1√
b(µ, σ2)

[
− ln

(
N − q[0,t]

Qt

)
+ ln(αT−t)−

1

2
b(µ, σ2)(T − t)

]
.

For small positive ∆ we have

Φ−1(at+∆)
√
T − (t+ ∆)− Φ−1(at)

√
T − t

=
1√

b(µ, σ2)

[
ln

(
N − q[0,t]

N − q[0,t+∆]

·
αT−(t+∆)

αT−t

)
+ ln

(
Qt+∆

Qt

)
+

∆

2
b(µ, σ2)

]

=
1√

b(µ, σ2)

[
ln

(
N − q[0,t]

N − q[0,t+∆]

·
αT−(t+∆)

αT−t

)
+

(
µ− σ2

2
+
b(µ, σ2)

2

)
∆ + σW∆

]
.

As both N − q[0,t] and αT−t are approximately affine functions, we can use the
following approximation

N − q[0,t]

N − q[0,t+∆]

·
αT−(t+∆)

αT−t
≈ 1

which completes the proof.
(b) We obtain the parameters µ̂ and σ̂2 by solving

m =
∆√

b(µ̂, σ̂2)

(
µ̂− σ̂2

2
+
b(µ̂, σ̂2)

2

)
, (15)

s2 =
σ̂2∆

b(µ, σ̂2)
. (16)

Solving Equation (16) for b(µ̂, σ̂2) and plugging the result into Equation (15)
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yields

µ̂(σ̂2) =
m

s
√

∆
σ̂ +

1

2

(
1− ∆

s2

)
σ̂2.

Inserting µ̂(σ̂2) into Equation (16) and solving for σ̂2 completes the proof. ♦

Unfortunately, all the estimation methods for the models of CT and GK
(cf. Theorem 3 - 5) cannot be used in practice. This can be explained as
follows. All the discussed estimation methods have in common that for pa-
rameter estimation one would have to compute for at1 , . . . , atn the values of
zti := Φ−1(ati+1

)
√
T − ti+1 − Φ−1(ati)

√
T − ti, calculate the empirical mean

and variance of {zti} and then equate them to the theoretical mean and vari-
ance which is a function of the model parameters µ and σ2. A useful estimation
method should ensure that the equation can be solved for every possible com-
bination of observed mean m ∈ M ⊆ R and variance v ∈ V ⊆ R+. In other
words, the set of possible mean-variance combinations M × V should span
R × R+. However, this is not the case as the set of possible mean-variance
combinations in Theorem 3 and 4 are a line and a point, respectively. In the
case of Theorem 5, it is a two-dimensional set but it does not span R × R+.
Therefore we introduce the following reduced-form model that overcomes this
difficulty.

Definition 6 (Reduced-form model of Grüll and Taschini).
Assume that the permit price divided by the penalty is described by the fol-

lowing SDE

d
(
Φ−1(at)

√
T − t

)
= adt+ bdWt,

where a, b ∈ R are the parameters of the reduced-form model under the histor-
ical measure (hereafter GT).

We employ Definition 6 for parameter estimation in the next section. For
completeness, in the following Corollary we derive an SDE for the reduced-
form model of GT in order to compare it to the model of CH.

Corollary 7 (SDE for reduced-form model of Grüll and Taschini).
The permit price dynamics in the model of GT are given by

dat =
Φ′(Φ−1(at))√

T − t

[(
a+

1− b2

2
√
T − t

Φ−1(at)

)
dt+ bdWt

]
.

Proof :

15



Let Xt = Φ−1(at)
√
T − t. Thus at = Φ

(
Xt√
T−t

)
:= f(Xt, t) and

fx(x, t) = Φ′
(

x√
T − t

)
· 1√

T − t
,

fxx(x, t) = Φ′′
(

x√
T − t

)
· 1

T − t
= − x√

T − t
Φ′
(

x√
T − t

)
· 1

T − t
,

ft(x, t) =
1

2
xΦ′

(
x√
T − t

)
· (T − t)−

3
2 .

By Definition 6, we have

dXt = adt+ bdWt,

d[X]t = b2dt.

By Ito’s lemma, we obtain

dat = df(Xt, t) = fx(Xt, t)dXt + ft(Xt, t)dt+
1

2
fxx(Xt, t)d[X]t

= Φ′
(

Xt√
T − t

)
· 1√

T − t

[
adt+ bdWt +

Xt

2(T − t)
dt− Xt

2(T − t)
· b2dt

]

=
Φ′(Φ−1(at))√

T − t

[(
a+

1− b2

2
√
T − t

Φ−1(at)

)
dt+ bdWt

]
.

♦

Remark:
The SDE for the reduced-form model of GT differs from the SDE for the
model of CH by the additional term 1−b2

2
√
T−tΦ

−1(at)dt.

4 Empirical analysis

In 2005 European policy makers launched the EU ETS, the world’s largest
emission trading system which covers approximately 50% of the CO2 emissions
in the European Union. The EU ETS consists of three different phases. Phase I
lasted until the end of 2007. Phase II started in 2008 and ends in 2012. A third
phase will start in 2013. Due to bankability restrictions between phase I and II,
it is necessary to treat the price series of each phase separately - see Alberola
and Chavallier [1]. As the futures market is more liquid than the spot market,
in what follows we perform our model calibration analysis with price series of
futures contracts maturing in December 2007 and December 2012, respectively.
In the first phase the price of emission permits is characterized by a very high
volatility level. The significant market correction between the end of April and
the beginning of May 2006 (see Figure 1) occurred when emission data for the
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year 2005 became public showing that there was an overall overestimation
of offending emissions. A long-lasting futures December 2007 price decrease,
characterized by a smaller volatility, started in August 2006. Such a price
behaviour is typical for permit prices at the end of a compliance period. This
has to do with the fact that at compliance time the permit price can only
take the values zero (overallocation) or the penalty fee (permit shortage). As
the reduced-form models also have this property one should expect that they
excel in capturing the observed price dynamics at the end of a compliance
period. In order to test this hypothesis we split up the futures December 2007
price series into two parts. We take the period of the crash as a cutting point.
Prices observed during the crash (i.e. 15 trading days) are not included into
our analysis. Another effect that can be observed at the end of the comliance
period is that from May, 10th 2007 transaction volumes are very low and the
permit price hovers below 0.30 e remaining at the same price level for several
consecutive days. We consider this special effect by performing our analysis
both on the full post-crash price series and on the series that is truncated
on May, 10th 2007. Finally, for phase II we consider futures contracts with
maturity December 2012 from January, 2nd 2008 until August, 31th 2009. The
futures permit price in this period exhibits a lower volatility level hinting at a
relatively more mature market. As observable in Figure 1, futures December
2012 prices range from 10 e to 35 e, peaking on July, 1st 2008 at 34.38 e.
So, in summing, we analyze the following four data series:

(1) pre-crash phase I ( 22 April 2005 - 24 April 2006)
(2) post-crash phase I (15 May 2006 - 17 December 2007)
(3) truncated post-crash phase I (15 May 2006 - 10 May 2007)
(4) phase II (2 January 2008 - 31 August 2009)

Besides comparing performances of the reduced-form models of CH and GT,
we calibrate other continuous-time stochastic processes and undertake an ex-
tensive model comparison. In particular, we restrict ourselves to widely known
stochastic processes, such as geometric Brownian motion (GBM) and normal
Inverse Gaussian (NIG). The last is an extensively used and more complex
process that overcomes some of the drawbacks of the GBM. For instance, it
captures the presence of fat tails.

Because residuals of the reduced-form models and of the GBM are normally
distributed, whereas residuals of the NIG process are not normally distributed,
we consider two different type of analysis. We first run normality tests to all
models with normally distributed residuals providing an investigation of the
goodness-of-fit of reduced-form models and the GBM (cf. Table 2-5). Second,
we assess in-sample performances of NIG, GBM, the model of CH and the
model of GT by comparing Q-Q-plots (cf. Figure 2-5) and computing the
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Fig. 1. Left: EUA-Dec07 futures price (22 April 2005 - 17 December 2007), right:
EUA-Dec12 futures price (2 January 2008 - 31 August 2009)

Kolmogorov-Smirnov-distance (cf. Table 1).
As expected, our empirical analysis shows that reduced-form models exhibit
their strength at the end of a compliance period. Taking the full post-crash
price series into account the reduced-form models outperform both GBM and
NIG (cf. Figure 3 and Table 1 and 3). However, the Q-Q-plots in Figure 4 reveal
that even reduced-form models cannot completely capture the price dynamics
in this particular period. Excluding the special effect of very high volatility due
to prices very close to zero and low trading volume at the very end of the first
compliance period (after May, 10th 2007) we get a slightly different picture.
Reduced-form models still outperform GBM but perform worse than the more
complex process NIG (cf. Figure 4 and Table 1 and 4). At the beginning of a
compliance period the price dynamics are by far captured better by NIG than
the tailor-made reduced-form models. Compared to GBM, the reduced-form
models perform slightly worse at the beginning of the first phase (cf. Table 2)
and similarly at the beginning of the second phase (cf. Table 5). Finally, the
two competing reduced-form models of GT and CH have a similar performance
whereby the model of GT slightly outperforms the model of CH at the very
end of the first compliance period (cf. Table 2-5). Summarizing, reduced-form
models perform relatively well at the end of a compliance period compared
to standard stochastic processes. However, they are clearly outperformed by
complex standard stochastic processes, especially, at the beginning of the two
compliance periods.
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NIG GBM Carmona & Hinz Grüll & Taschini

Phase 1 - Pre-Crash Period

KS-Distance 0.0321 0.0928 0.1207 0.1179

Phase 1 - Post-Crash Period

KS-Distance 0.1716 0.2188 0.1645 0.1037

Phase 1 - Post-Crash Period (truncated)

KS-Distance 0.0683 0.144 0.0951 0.0994

Phase 2

KS-Distance 0.0257 0.0757 0.0816 0.0785
Table 1
Comparison of goodness-of-fit.

5 Conclusions

We derive three estimation methods for the equilibrium models proposed by
Chesney and Taschini [7] (CT) and Grüll and Kiesel [11] (GK) for modeling
the price of emission permits. The resulting estimation methods for the models
of CT and GK cannot be used in practice. This has to do with the fact that the
obtained SDEs do not possess sufficient free parameters for model-calibration
and, therefore, are not flexible enough to capture the historical permit price
evolution. We propose a new reduced-form model (hereafter denoted by GT)
based on the full equilibrium models of CT and GK. Furthermore, we show
how the model of CT with time-dependent emission rate can be transformed
into the reduced-form model proposed by Carmona and Hinz [5] (CH).

Using futures prices in the EU ETS with maturity December 2007 and Decem-
ber 2012, for the first time in the literature we calibrate reduced-form models
and assess the in-sample performances of the models of CH and GT. With
the aim of providing a comprehensive comparison among potentially compet-
ing models, we also calibrate and compare two quite popular continuous-time
stochastic processes (GBM and NIG). In a perfect competitive equilibrium
framework with no-banking options, futures permit prices are characterized
by the fact that they tend to either zero or the penalty fee at the end of a com-
pliance period. As reduced-form models capture this characteristic, we split
up the permit price series in order to analyze the performance both at the be-
ginning and at the end of a compliance period. In the current price-evolution,
we observe that reduced-form models perform relatively well at the end of a
compliance period compared to standard stochastic processes. However, they
are clearly outperformed by complex standard stochastic processes such as
NIG, especially, at the beginning of the two compliance periods. GBM and
reduced-form models perform similarly at the beginning of a compliance pe-
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riod. However, reduced-form models describe the price dynamics at the end of
the first compliance period much better than GBM. Finally, the two compet-
ing reduced-form models of GT and CH have a similar performance whereby
the model of GT slightly outperforms the model of CH at the very end of the
first compliance period.

The evaluation of the price of emission permits in the coming years will show
whether, in a more mature permit market, complex standard stochastic pro-
cesses such as NIG still outperform reduced-form models that take into account
peculiar characteristics of permit markets.

6 Appendix

The residuals of GBM and the reduce-form models of CH and GT are all
standard normally distributed. Therefore we can apply normality tests to the
log-returns in the case of GBM, to the data transformed according to the
discretized version of Equation (7) in the case of the model of CH and to the
data transformed according to the discretized version of Definiton 6 in the case
of the model of GT. We omit the usual footnotes concerning the significance of
the normality tests as the null hypothesis that the data is normally distributed
is rejected throughout at the 5% significance level. The tables show the test
statistics of the performed normality tests. The most favourable test statistic
for normality (i.e. the lowest) is marked bold in each row.
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Normality test GBM Carmona & Hinz Grüll & Taschini

Kolmogorov-Smirnov 0.0928 0.1207 0.1179

Anderson-Darling 5.2260 7.5697 7.1298

Pearson 39.594 67.106 67.255

Jarque-Bera 1734.8 3458.7 2792.4

Cramer-von-Mises 0.8326 1.2122 1.1363
Table 2
Comparison of goodness-of-fit (Pre-Crash).
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Fig. 2. Log-returns, transformed data and Q-Q-plots of different models for
pre-crash-period
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Normality test GBM Carmona & Hinz Grüll & Taschini

Kolmogorov-Smirnov 0.2188 0.1645 0.1037

Anderson-Darling ∞ 13.213 9.800

Pearson 1048.5 689.3 136.15

Jarque-Bera 50059 406 233

Cramer-von-Mises 8.6221 2.6040 1.7628
Table 3
Comparison of goodness-of-fit (Post-Crash).
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Fig. 3. Log-returns, transformed data and Q-Q-plots of different models for
post-crash-period
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Normality test GBM Carmona & Hinz Grüll & Taschini

Kolmogorov-Smirnov 0.1440 0.0951 0.0994

Anderson-Darling 10.581 3.887 4.277

Pearson 171.93 113.28 58.53

Jarque-Bera 387.94 82.39 78.14

Cramer-von-Mises 2.0310 0.7166 0.7889
Table 4
Comparison of goodness-of-fit (Post-Crash truncated).
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Fig. 4. Log-returns, transformed data and Q-Q-plots of different models for
post-crash-period (truncated)
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Normality test GBM Carmona & Hinz Grüll & Taschini

Kolmogorov-Smirnov 0.0757 0.0816 0.0785

Anderson-Darling 3.2396 3.3747 3.0556

Pearson 46.741 44.896 43.377

Jarque-Bera 72.644 212.838 140.951

Cramer-von-Mises 0.5395 0.5381 0.4884
Table 5
Comparison of goodness-of-fit (Second Phase).
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Fig. 5. Log-returns, transformed data and Q-Q-plots of different models for second
phase
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