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Abstract 
 

An arbitrage free multi-factor model is developed of the correlated forward curves of the 

crude oil, gasoline, heating oil and tanker shipping markets. Futures contracts trading on 

public exchanges are used as the primary underlying securities for the development of a 

multi-factor Gaussian Heath-Jarrow-Morton (HJM) model for the dynamic evolution of the 

correlated forward curves. An intra- and inter-commodity Principal Component Analysis 

(PCA) is carried out in order to isolate seasonality and identify a small number of 

independent factors driving each commodity market. The cross-commodity correlation of 

the factors is estimated by a two step PCA. The factor volatilities and cross-commodity 

factor correlations are studied in order to identify stable parametric models, 

heteroskedasticity and seasonality in the factor volatilities and correlations. The model 

leads to explicit stochastic differential equations governing the short term and long term 

factors driving the price of the spot commodity under the risk neutral measure. Risk premia 

are absent, consistently with HJM arbitrage free framework, as they are imbedded in the 

factor volatilities and correlations estimated by the PCA. The use of the model is described 

for the pricing of derivatives written on inter- and intra-commodity futures spreads, Asian 

options, the valuation and hedging of energy and shipping assets, the fuel efficient 

navigation of shipping fleets and use in corporate risk management. 
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1. INTRODUCTION 
 

The crude oil and tanker shipping markets are exposed to a variety of risks reflected in the 

high volatility of the prices of crude oil and its products – gasoline, heating oil, jet fuel – 

and tanker shipping freight rates. The mitigation of these risks has prompted the growth of 

the futures contracts of crude oil and its products that trade on public exchanges – the New 

York Mercantile Exchange (NYMEX) and the InterContinental Exchange (ICE) -- and of 

swaps and other customized derivatives that trade in cleared Over The Counter (OTC) 

markets aiming to mitigate counterparty risks.  

 

The deep and liquid crude oil futures and forward paper markets have emerged as an 

important vehicle for price discovery, asset valuation, hedging and risk management.  A 

robust model of the correlated dynamics of the forward curves of crude oil, its products and 

of the tanker shipping freight rates can be very valuable to market participants involved in 

the management of real assets – crude oil reservoirs, storage facilities, refineries, tanker 

shipping fleets – as well as investors who are primarily involved in the management of 

securities.   

 

The forward curve of a commodity has embedded in it information about the economic 

factors that drive the short and long term evolution of the spot price. Therefore the futures 

contracts will be considered in the present study as the primary securities for the 

development of a multi-factor model of the underlying commodity markets – crude oil, 

gasoline, heating oil and tanker shipping freight rates. This approach reduces to standard 

spot price models of the crude oil price [Gibson and Schwatrz (1990), Ross (1997), 

Schwartz (1997), Schwartz and Smith (2000)], it allows for any number of factors and it 

accounts for cross-commodity correlation in their futures and hence their spot prices.  

 

The arbitrage free evolution of the futures prices is modeled under the Heath-Jarrow-

Morton framework developed for the modeling of the evolution of the term structure of 

interest rates [Heath, Jarrow and Morton (1992), Clewlow and Strickland (2000)]. Risk 
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premia are not explicitly present in the HJM model, they are instead imbedded in the 

volatilities of the futures prices and imputed in the drifts of the spot price factor dynamics. 

In the present study the prices of futures and forward contracts are assumed to be identical, 

an assumption justified under deterministic interest rates or under stochastic interest rates 

with a term structure uncorrelated with the forward curve of the commodity under study 

[Cox, Ingersoll and Ross (1981)]. In practice the equality of the futures and forward prices 

is satisfactory assuming that the forward contract is free of credit risk. For the pricing of 

long-dated commitments it may be necessary to account for the futures-forward spread 

which is available in explicit form under a joint HJM model of the correlated term 

structures of interest rates and the commodity. 

 

A statistical analysis of the log-returns of the futures prices of crude oil, gasoline and 

heating oil reveals that their probability distribution is approximately Gaussian, except 

perhaps for contracts with very short tenors. This reflects the efficiency of the deep and 

liquid crude oil futures markets where information flows are readily reflected in the prices 

of futures contracts which may be easily entered into and reversed. The drift of the log-

returns of a futures contract depends on the slope of the forward curve which may be 

trading in contango, backwardation or in a composite formation. In the case of heating oil, 

shipping futures and other energy commodities (e.g. natural gas) a deterministic seasonality 

is often observed in the shape of the forward curve. Removing the deterministic drift 

associated with the slope of the forward curve and ensuring the stationarity of the 

remaining zero-mean price process, are essential for the statistical processing of the log-

returns of the futures prices and the development of robust models under the HJM 

framework. This is accomplished by introducing futures processes with constant relative 

tenors, obtained by linear interpolation from the prices of futures contracts with fixed 

tenors. The deterministic drift of the constant relative tenor futures follows from the slope 

of the forward curve which may include seasonality. Moreover, the de-trended process has 

a stationary volatility, a property not enjoyed by the fixed tenor futures price process which 

has a volatility that increases as the contract approaches expiration by virtue of the 

Samuleson hypothesis which is strongly supported by market data. 
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The further statistical processing of the de-trended rolling tenor futures contracts is carried 

out by a Principal Component Analysis (PCA). The PCA is a powerful parametric free 

method for the derivation of a small number of independent statistical factors driving the 

fluctuations of the de-trended rolling tenor futures prices, and after interpolation, of the 

fixed tenor futures prices. This method is particularly effective for the explicit 

identification of factors from the fluctuations of the prices of a set of highly correlated 

securities. This is the case with the futures contracts of different tenors of a particular 

commodity and of the forward rates in the interest rate markets [Rebonato (2002)]. The 

PCA analysis of the individual forward curve of the commodity of interest – crude oil, 

gasoline, heating oil – enables the development of an arbitrage free model for the evolution 

of the futures price under the HJM framework. A small number of factors, their volatilities 

and their rate of decay with respect to the relative tenor of the underlying futures contract 

follow directly from the PCA which is an eigenvalue-eigenvector decomposition of the 

covariance matrix of the de-trended log-returns of the rolling tenor futures. 

 

Demand for crude oil is largely driven by the demand for gasoline, aviation jet fuel, 

shipping bunker fuel, heating oil and other products produced by refineries. Therefore the 

statistical factors that drive the crude oil forward curve are likely to be correlated with the 

statistical factors driving the forward curves of gasoline or heating oil. Liquid futures also 

trade on ICE for gasoil which is used for the hedging of aviation jet fuel exposures. The 

statistical factors of crude oil, gasoline and heating oil follow in explicit form from the 

respective PCA analyses and their correlation follows by a simple matrix operation. The 

evaluation of the factor volatilities and cross-commodity factor correlations completes the 

derivation of the HJM model for the arbitrage free evolution of the correlated forward 

curves of crude oil, gasoline and heating oil which may be used for the pricing of 

derivatives, asset valuation and hedging.  

 

Tests are conducted to determine the statistical properties of the factor volatilities and cross 

commodity factor correlations, aiming to determine if these parameters may be assumed to 

be constant and identify heteroscedasticity and seasonality, other than that present in the 
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mean shape of the forward curve. This analysis is based on NYMEX crude oil, gasoline 

and heating oil futures data obtained from Datastream for the period 2003-2008. 

 

A stochastic differential equation is derived driving the spot price process of the underlying 

commodity in the absence of arbitrage opportunities. This follows from the derivation of 

the stochastic differential equation governing the evolution of the futures prices under the 

Gaussian HJM model and the consistency condition that the spot and futures prices 

converge at the expiration of the futures contract. It is shown that the spot price evolution is 

driven by the same number of factors as the futures curve and the factor stochastic 

dynamics is mean reverting, with the factor rates of mean reversion being functions of the 

slope of the factor loadings with respect to the tenor. The short term dynamics is governed 

by a higher volatility while the long term dynamics is characterized by a lower volatility. 

This is consistent with the spot price model of Schwartz and Smith (2000). In the present 

HJM framework risk premia are not explicitly present, they are instead implicitly 

embedded in the factor volatilities estimated by the PCA which appear as parameters in the 

spot price stochastic dynamics. 

 

As has been the case in the securities and crude oil markets, the development of robust 

marked-to-market models, derivative pricing and hedging methods for shipping derivatives 

is essential for the increase of their liquidity and their wide adoption by shipowners, 

charterers, banks and investors. Bulk shipping is a volatile industry providing ocean 

transportation services for the movement of commodities, crude oil and its products in the 

case of tanker shipping and iron ore, coal, grains, bauxite, alumina and phosphate rock in 

the case of dry bulk shipping. The commodity-like product produced by the shipping 

industry is ton-miles, Its price – the freight rate -- is determined by the supply of shipping 

tonnage and the derived demand for the transportation of liquid and dry bulk commodities 

in a perfectly competitive market. Two types of charter contracts prevail in the shipping 

industry. In a voyage charter the spot freight rate earned by the shipowner is expressed in 

dollars per ton of cargo ($/ton) while in a time charter the T/C rate earned is expressed in 

$/day. In the case of the tanker sector the freight rates are expressed as a percentage of the 

flat Worldscale (WS) spot rate expressed as $/ton and published yearly by the Worldscale 
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Association. The details of these and other charter contracts are presented in Stopford 

(1997). The prevailing freight rates in sub-sectors and routes of the bulk shipping industry 

are reflected in dry bulk and tanker indices published daily by the Baltic Exchange and 

Platts. They represent the most heavily traded routes within the dry bulk and tanker sectors 

and are discussed in Kavussanos and Visvikis (2006). 

 

The spot or T/C freight rates of individual indices serve as the underlying assets for 

derivative securities that trade on public exchanges and over the counter (OTC). The public 

exchanges offering trading and clearing for shipping freight derivatives include the 

International Maritime Exchange (IMAREX) launched in 2000 and the New York 

Merchantile Exchange (NYMEX) since 2005. In 2006 the Singapore Exchange Limited 

(SGX) launched SGX AsiaClear for the OTC clearing of energy and shipping freight 

derivatives.  The derivatives trading on IMAREX are dirty and clean oil & products tanker 

and dry bulk freight derivatives that settle against single route spot indices published by the 

Baltic Exchange and Platts. Basket dry bulk derivatives are also offered on IMAREX that 

settle against Baltic indices that represent the average T/C rates earned on the single route 

Capesize, Panamax and Supramax dry-bulk sub-sectors.  

 

A large and growing market for shipping Forward Freight Agreements exits over the 

counter. As is the case with the vast crude oil OTC derivatives market, FFAs are bilateral 

agreements between two counterparties that settle against the arithmetic average of a spot 

freight rate index. The flexibility of OTC transactions allows the design and pricing of 

contracts tailored to the risk management needs of shipping companies, charterers, banks 

and investors. FFAs entail credit risk not present in the shipping futures contracts that clear 

on IMAREX. Clearing and settlement services for OTC FFAs are offered by the London 

Clearing House Clearnet (LCH.Clearnet), IMAREX and SGX. These services are essential 

for the growth of the shipping FFA and futures markets since they mitigate credit risk in an 

industry consisting of a large number of privately held shipping firms. A limitation of the 

OTC FFA market is that positions in derivatives are not easy to reverse at low cost prior to 

settlement. This flexibility is present in a liquid futures market which allows the 

implementation of dynamic hedging and other risk management strategies.   
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A multi-factor HJM model for tanker shipping futures and FFAs is developed along the 

same lines as in the crude oil, gasoline and heating oil markets. Most of the crude oil 

produced worldwide is transported by tankers and the value of the crude cargo is much 

larger than the freight rate cost. Therefore tanker shipping ton-miles may be viewed as an 

additional commodity driven by supply and demand dynamics of the crude oil its products 

over particular routes. A technical complexity present in the tanker shipping futures 

markets is that contracts settle against the arithmetic average of the underlying spot index. 

This requires an extension of the HJM model for the evolution of the shipping futures price 

process in the pre- and post-settlement periods. Otherwise, the modeling of the tanker 

shipping forward curve proceeds along the lines followed for the crude oil, gasoline and 

heating oil forward curves.  

 

Tanker freight futures price series have been obtained for a major tanker shipping route for 

which liquid futures contracts trade on IMAREX. Constant relative tenor shipping futures 

prices have been obtained by interpolation from futures with fixed tenors, properly 

accounting for the length of the settlement period. The mean shape of a baseline tanker 

shipping futures curve is estimated and used to de-trend the log-returns of the traded 

futures contracts. Their evolution dynamics is then cast in the form of the HJM model and a 

small number of factors and their volatilities are estimated by a PCA. This leads to a model 

with lognormal evolution dynamics for the shipping futures. As in the crude oil market, the 

HJM model for the evolution of the tanker shipping futures leads to explicit dynamics for 

the evolution of the underlying spot index in the absence of arbitrage opportunities. This 

dynamics is driven by a number of factors which reveal the short term fluctuations around a 

long term trend of the spot shipping index under study along with the speed of their mean 

reversion.  

 

The multi-factor correlated HJM models for the crude oil and tanker shipping futures 

markets lead to lognormal dynamics for the futures price processes with time dependent 

deterministic volatilities. This allows the explicit pricing of European derivatives written 

on the underlying spot commodity or index and a futures contract by using Black’s 



 10

formula. When liquid futures options are trading, e.g. in the crude oil market, the explicit 

formulae for calls and puts may be used to extract implied volatilities which may in turn be 

used to used to calibrate the factor volatilities of the particular forward curve under study. 

The pricing of options of intra- and inter-commodity futures spreads and baskets is also 

easy to carry out under the log-normal HJM framework using explicit formulae and 

efficient numerical methods. The accurate pricing of options on futures spreads and baskets 

depends critically on the correlations of the futures contracts in the spread. These in turn 

are functions of the factor volatilities and cross-commodity factor correlations the robust 

estimates of which is a focal point of the present study. 

 

Options written on tanker freight rate futures are illiquid. Their pricing depends on the 

dynamics of the underlying futures price process which is lognormal under the present 

multi-factor HJM model. Therefore, European options on freight rate futures may be priced 

explicitly by using the Black formula. The option price in turn depends on the volatilities of 

the factors that drive the underlying futures process which are estimated by the PCA of the 

tanker shipping forward curve under study. The present HJM modeling framework leads to 

the explicit pricing of shipping futures options using Black’s formula which in turn allows 

the estimation of implied volatilities where a liquid option market exists which may be 

used to better understand the dynamics of the shipping sector under study. Therefore, the 

present modeling framework strengthens the links between the modeling and pricing of 

derivatives in the crude oil and shipping markets and aims to enhance the understanding 

and eventually the liquidity and depth of the latter. 

 

The derivative securities priced in the present study may be used as the fundamental 

building blocks for the valuation of a wide range of energy commodity, shipping assets and 

investment opportunities within the real options framework. The valuation is discussed of 

the option held by a refinery to convert oil into products over a specified time period.  The 

value is also derived of the right to develop a hydrocarbon reservoir and of physical or 

synthetic storage of energy commodities. The valuation is discussed of a contract to 

transport a liquid energy commodity between two geographical locations where futures 

contracts written on the same physical commodity trade and when the optionality exists to 
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control the vessel destination and speed. The valuation is discussed of a charter portfolio 

consisting of cargo vessels combined with a paper portfolio of shipping futures and futures 

options. The fuel efficient navigation of a shipping fleet is addressed by casting the seastate 

uncertainty in a lognormal diffusion framework which allows the explicit solution of the 

vessel fuel minimizing course and speed using methods of stochastic dynamic 

programming. Finally, the optimal dynamic management of futures and futures options 

portfolios is discussed when the underlying securities are governed by lognormal diffusions 

with time deterministic and stochastic coefficients. 

 

The role of derivatives in corporate finance for the hedging of market risks faced by energy 

and shipping firms is addressed. The modeling of the default free interest rates and the 

pricing of credit risk using structural and reduced form models within the HJM framework 

is discussed. The common modeling framework of market risks that energy and shipping 

firms are exposed to enables its use for the evaluation of a wide range of integrated risk 

management strategies. They include the formulation and pricing of flexible long term 

contracts for the delivery of energy and shipping freight services, the minimization of firm 

cash flow variance, the selection of the optimal firm capital structure, and the design of 

value maximizing financial and investment policies via the proper mix of equity and debt. 
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2. CRUDE OIL FUTURES PRICE PROCESS 

 
Assume that t=0 is an initial reference time hereafter assumed fixed. Denote by S(t)=St the 

price of  the underlying spot asset at the current time t -- crude oil or a shipping index -- by 

F(t,T) the price of a futures contract written on St with expiration date T. At expiration, the 

long futures position receives the difference S(T)-F(t,T) where S(T) is the price of the spot 

asset delivered by the short futures position. Evidently, the following consistency 

conditions must hold, F(t,t)=S(t) and F(T,T)=S(T). At time t futures contracts with fixed 

tenors jT  are assumed to trade with prices ( , ), 1,...,jF t T j N= . 
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Figure 2.1: Crude oil Forward Curves at three dates 

 

Figure 2.2: Crude oil Price from 1/1/2003-1/1/2008 

 

Figures 2.1 plot the crude oil forward curve at three dates 1/1/2004, 1/2/2006 and 1/1/2008. 

On 1/1/2004 the forward curve was trading in backwardation, namely the futures contracts 

with tenors up to about 40 months were trading at a discount to the spot. Two years later on 

1/2/2006 the forward curve was trading in contango for the front 20 months followed by a 

declining term structure from the 20th to the 80th month. On 1/1/2008 the crude oil forward 
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curve was again trading in backwardation. The evolution of the crude oil spot price over 

this period is plotted in Figure 2.2. As time evolves the tenor of futures contracts shrinks as 

they approach expiration in a backwardation market, their price drifts upwards towards the 

spot. Moreover, as futures contracts approach expiration their volatility increases as 

positions are being offset or rolled over prior to expiration in order to prevent delivery. 

When the forward curve trades in contango the futures price drifts downwards as the 

contract approaches expiration again with an increasing volatility.  The volatility increase 

and drifts towards expiration of the futures prices introduce a non-stationarity which 

complicates their statistical modeling. 

  

It is therefore preferable to study the price evolution of futures prices with constant tenors 

rolling relative to the current time t. The prices of constant relative tenor contracts can be 

obtained by interpolation from the prices of traded futures contracts with fixed tenors. 

Their volatility is stationary and decreases with increasing relative tenor, by virtue of the 

Samuelson hypothesis. The drift to maturity associated with the slope of the forward curve 

is absent in the prices of the constant relative tenor futures. Their drifts instead depend on 

the drift of the spot price and vary as a function of the relative tenor. This variation controls 

the evolution of the shape of the forward curve, namely its transition from backwardation 

to contango and vice versa.  The modeling of the prices of the constant relative tenor 

futures may be carried out robustly using the powerful statistical technique of Principal 

Components Analysis (PCA) which is particularly suited for the study of highly correlated 

securities. The PCA reveals a stable structure of the volatility term structure of the rolling 

tenor futures and produces a very small set of explicit statistical factors that dominate the 

evolution of the forward curve. The following stochastic dynamics is assumed to govern 

the evolution of the futures price processes with fixed tenors under the real world objective 

measure 

 

 

(2.1) 

 



 15

The M-dimensional standard Brownian motions 1( ,..., )NW W are assumed to be mutually 

independent and represent the M sources of uncertainty affecting all futures contracts 

trading on the forward curve of a given commodity. The factor volatilities ( , )k jt Tσ  are in 

the present study assumed to be deterministic time dependent quantities. The drift 

( , )jt Tμ is also time dependent and is assumed deterministic. Under these assumptions it 

follows that the de-trended futures prices follow a lognormal process an assertion which is 

supported by market prices as discussed in Section 3. 

 

An implicit assumption in the model (2.1) is that M unobservable statistical factors affect 

the N futures contracts of the commodity forward curve under study. The assumption of 

their independence is not necessary, yet it turns out to be convenient and follows from the 

Principal Components Analysis (PCA) of the historical futures price series described 

below. The PCA analysis reveals a small number of factors d<M that dominate the 

fluctuations of the futures price process around their drift. It also produces estimates of the 

volatilities ( , )k jt Tσ of the k-th factor affecting the j-th futures. 

 

As the current time t approaches the fixed expiration date of the futures contract Tj, the 

volatility of the futures contract, and consequently the factor volatilities ( , )k jt Tσ , increase. 

This complicates the estimation of ( , )k jt Tσ . This complexity can be removed by 

introducing a set of rolling futures contracts ( , )jf t t τ+  with constant relative tenors jτ , 

j=1,…,N. The prices of this new set of securities may be obtained by linear interpolation 

from the market prices of traded futures contracts ( , )jF t T  using the relation 
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The relative tenors jτ  span the prices of liquid futures contracts with 1 1t Tτ+ >  and the 

rolling tenor futures contracts ( , ), 1,...,jf t t j Nτ+ =  are expected to have stationary 

volatilities. The time t stochastic evolution of the process ( , )jf t t τ+ follows from the 

evolution of the process ( , )jF t T given by (2.1) and the use of (2.2) to define the drift and 

factor volatilities of  ( , )jf t t τ+  

 

 

 

 

(2.3) 

 

The drift of the constant relative tenor futures ( , )jf t t τ+ is now seen to depend on the 

slope of the original futures curve with respect to the tenor. The factor volatility 

( , )k jt tσ τ+  is assumed to be a stationary process. In the simplest setting it is assumed to be 

just a function of the relative tenor, hence ( , ) ( )k j k jt tσ τ σ τ+ � . These constant volatilities 

will be estimated from the statistical processing of the de-trended prices of the price series 

( , )jf t t τ+ . Upon estimation of the constant volatilities ( )k jσ τ using the PCA analysis 

described below, the original volatilities ( , )k jt Tσ follow by a reverse linear interpolation 

analogous to (2.2). Equation (2.3) may be recast in a more compact form which is 

amenable for the estimation of ( )k jσ τ by the PCA analysis described below 

 

 

 

 

 

 

(2.4) 
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The PCA analysis proceeds as follows. Assume initially that the number of factors M is 

equal to N, the number of price series. The NxN covariance matrix ijΣ of the price series 

ln ( )id p t and ln ( )jd p t  in the population is given by the relation 

 

 

 

 

(2.5) 

 

 

The left-hand side of (2.5) may be estimated from the price series of the rolling tenor 

futures prices ( ), 1,...,j mp t m N= evaluated at times mt  assuming a constant interval 

1m mt t t+Δ = − , say a day. The in sample estimate of the covariance matrix [ ]ijΣ is obtained 

by introducing the vector of the de-trended daily log-differences of the price series 

( ), 1,...,i mp t m N=  
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(2.7) 

 

 

Comparing (2.4) and (2.6) we may assume the approximate equality of the in sample and 

population values of the covariance matrices 

 

(2.8) 

 

The form of (2.8) suggests the Singular Value Decomposition (SVD) of the symmetric 

positive definite matrix [ ] [ ]TX X which will relate the unknown volatilities ( )k iσ τ to the 

positive eigenvalues and eigenvectors of the dispersion matrix [ ] [ ]TX X . The SVD of 

[ ]Σ takes the standard form 

 

 

 

(2.9) 

 

 

 

In (2.9) iλ , i=1,…,N are the positive eigenvalues, [ ]U is the orthogonal matrix containing 

the eigenvectors and the matrix [ ]V  has been defined as the product of [ ] ikU u= with the 

diagonal matrix containing the square root of the eigenvalues. Denoting by [ ] ikik
V υ= the 

typical element of the matrix [ ]V , we may write 

 

(2.10) 

 

 

The last equality of (2.10) yields the desired result, 
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(2.11) 

 

Equation (2.11) states that the volatility of the k-th factor as it affects the i-th price series is 

equal to the product of the square root of the k-th eigenvalue times the (i,k)-th element of 

the matrix of eigenvectors [ ]U . The eigenvalues are ordered so that 1λ > 2λ >….>0. The 

rate of decay of the eigenvalues may be quite rapid and the first few, say d<N, are often 

sufficient to describe most of the fluctuation of the price series. This value therefore defines 

the number of dominant factors affecting most of the variation of the forward curve under 

study. Examples illustrating this property of the PCA will be given in the next Section for 

the crude oil, gasoline and heating oil markets. 

 

The constant volatilities of the rolling tenor futures contracts estimated by (2.11) may be 

used to determine the time dependent volatilities ( , )k it Tσ  of the fixed tenor traded futures 

contracts using (2.2). This step along with the selection of the number d of dominant 

factors completes the estimation of the multi-factor model (2.1) for the traded futures of the 

commodity under study. The estimation of the drift ( , )jt Tμ  under the real world objective 

measure may be carried out independently using econometric techniques [Campbell, Lo 

and MacKinley (1997), Lo and MacKinley (1999)]. Yet, its value does not enter the 

estimation of derivative securities under the risk neutral measure when the drift ( , )jt Tμ is 

zero and the futures price becomes a martingale. The risk neutral pricing of derivatives is 

discussed in Sections 5 and 6. 

 

 Correlated Commodity Principal Components Analysis 
 

Consider now two commodity forward curves A and B and assume that a PCA analysis has 

been carried out of each forward curve individually using the method described above. 

Assume initially that the number of factors is equal to the number of traded futures 

contracts. It follows that the stochastic evolution of the futures of each commodity is given 

by the stochastic differential equations 

( ) , , 1,...,k i ik k iku i k Nσ τ υ λ= = =
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(2.12) 

 

 

 

 

 

 

The primary output of each PCA analysis are the factor volatilities and the number of 

dominant factors d which is assumed to be the same for both commodities. The Brownian 

increments ( )ldW t of commodity A are mutually independent and the same applies to the 

Brownian increments ( )kdZ t of commodity B. This is the result of the individual PCAs 

carried out independently for commodities A and B. Yet, the cross-commodity Brownian 

increments may be correlated. It is therefore assumed that  

 

(2.13) 

 

In (2.13) klρ is assumed to be a constant NxN correlation matrix which is to be estimated 

from the prices of traded futures contracts of commodities A and B. It follows from (2.3)-

(2.4) that the correlation coefficient klρ between the Brownian shocks also applies to the 

rolling tenor futures contracts and can therefore be estimated from their price series. Define 

the de-trended log-return vectors for commodities A and B 

 

 

 

 

 

 

( ) ( )k l kldW t dZ t dtρ=
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(2.14) 

 

 

 

Proceeding as in the case of a single commodity we define the dispersion matrices of 

commodities A and B and their cross-covariance matrices as follows  

 

 

(2.15) 

 

 

 

The cross-covariance matrix may also be estimated from the stochastic differential 

equations governing the rolling futures prices of commodities A and B, 

 

 

 

 

(2.16) 

 

 

 

Equating the sample cross-covariance matrix (2.15) estimated from the price series to its 

population counterpart derived from the model we obtain  
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(2.17) 

 

In the last equality of (2.17) the indicial summation notation was introduced for brevity. 

The factor volatilities that enter (2.17) have been estimated from the individual PCAs 

carried out for commodities A and B. Recalling (2.10) we may recast (2.17) in matrix form 

 

(2.18) 

 

The matrices [ ]AV ,[ ]BV have been obtained from the SVD of the covariance matrices of 

commodities A and B individually and satisfy the relations 

 

 

(2.19) 

 

 

The unknown correlation matrix [ ]ρ follows from (2.18) explicitly in the form 

 

(2.20) 

 

 

The estimation of the factor volatilities of commodities A and B by independent PCAs and 

the factor correlation by (2.20) completes the statistical estimation of the cross-commodity 

multi-factor covariance structure using the price series of rolling tenor future contracts.   

 

The modeling of the deterministic time dependent instantaneous volatilities ( , )k it Tσ and 

their calibration to market data lies at the core of the HJM model of the forward curve, 

extended here to N futures per commodity forward curve. The PCA analysis described 

above has relied on historical price data of liquid futures contracts for the direct estimation 

of the factor volatilities. Often it may be appropriate to define and model a single volatility 

per futures contract followed by the subsequent estimation of the factor loadings. This 
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approach has certain advantages. The single volatility of each futures contract is related to 

the Black implied volatility which is forward looking and may be extracted from the prices 

of liquid futures options. Moreover, this volatility may be modeled as a stochastic process 

which may include jumps, a step that may be necessary for futures contracts with short 

tenors or for volatile forward markets like electricity and shipping with non-Gaussian log-

returns. 

 

Consider the stochastic evolution of a futures contract of a commodity with fixed tenor Tj. 

Factoring the instantaneous time dependent volatility from the factor volatilities we obtain 

 

 

 

 

 

(2.21) 

 

 

 

 

 

 

The quantity ( , )jt Tσ is hereafter referred to as the instantaneous volatility of the j-th 

futures contract of the commodity under study. The normalized intra-commodity factor 

loadings ( , )k jt Tλ will be estimated using a PCA of the correlation matrix of the rolling 

tenor futures contracts, analogous to the one described above, but only after the 

instantaneous volatility ( , )jt Tσ has been estimated. 

 

The instantaneous volatility may be calibrated against the Black implied volatilities of 

traded futures options. It is known that the Black implied volatilities are related to the time 
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averages of the instantaneous variances over the tenor (t,T) of a futures options contract 

given by the expression 

 

 

(2.22) 

 

 

The availability of liquid futures options over a range of tenors Tj permit the estimation of a 

functional form of the instantaneous volatility ( , )jt Tσ by a nonlinear squares fit of the 

Black implied volatilities defined by (2.22). This approach has been adopted for the 

modeling and pricing of derivatives written on the term structure of interest rates [Rebonato 

(2002)].  

 

Alternatively, the instantaneous volatility may be estimated from historical data and 

modeled prior to the estimation of the factor loadings by a PCA of the correlation matrix of 

the rolling tenor futures contracts. Recall the stochastic differential equation governing the 

price of the rolling tenor futures. Using the definition of the instantaneous volatility given 

by (2.21) we obtain 

 

 

 

 

 

 

(2.23) 

 

It is reasonable to expect that the rolling tenor instantaneous volatility and correlations are 

stationary stochastic processes, unlike their fixed tenor counterparts which are clearly non-

stationary as the life of a futures contract shortens towards expiration. The simplest 
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approximation is to assume that ( , ) ( )j jt tσ τ σ τ+ � , namely that the j-th rolling tenor 

volatility is constant. The same would apply to the factor loadings ( , ) ( )k j k jt tλ τ λ τ+ � .  

 

The volatility ( )jσ τ may be estimated from historical prices of the rolling tenor futures 

prices. Using (2.5)-(2.7) we obtain an estimate of the volatility of the j-th rolling tenor 

futures contract from the relation 

 

(2.24) 

 

The length M of the sample of rolling futures prices in the vector jxG  will be selected along 

lines analogous to those used to estimate the volatility of other securities using historical 

price series. In volatile commodity and shipping markets, it is likely that the assumption 

that the volatility ( )jσ τ is constant may not be sufficient. A more accurate assumption is 

that it is a stationary process of the form 

 

(2.25) 

 

The time dependence of ( , )jtσ τ may be deterministic or stochastic. Seasonality in the 

energy commodity and shipping markets may also be present in ( , )jtσ τ . This process may 

again be estimated from historical data using (2.24), independently of the factor loadings, 

in light of their unit norm. This statistical estimation will reveal the degree to which it can 

be approximated by a deterministic or a stochastic process and if jumps are present. This 

step will permit the use of stochastic volatility models with jumps for the modeling of 

( , )jtσ τ . In the discrete case GARCH models may be used. Moreover, the model 

parameters are likely to depend on the magnitude of the rolling tenor jτ . For small rolling 

tenors, the rolling futures price process may have fat tails and a stochastic volatility process 

may be appropriate. For large relative tenors the price process may be Gaussian and the 

assumption that the time dependence of the volatility ( , )jtσ τ is deterministic may be 

sufficient.  

( ) T
j j jx xσ τ =

G G

( , ) ( , )j jt t tσ τ σ τ+ =
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Following the estimation of ( , )jtσ τ from implied volatility or historical price data, the 

correlation matrix of the rolling futures price processes follows from the expression 

 

 

(2.26) 

 

 

Assuming that the time dependence in the covariance of the i-th and j-th price processes is 

mostly present in the respective volatilities ( , )itσ τ and ( , )jtσ τ , modeled as indicated 

above, the correlation matrix defined by (2.26) may be assumed to contain elements that 

are nearly constant. In such a case the factor correlations may be estimated by a direct 

implementation of the PCA described above. If significant time variability is detected in 

the correlation matrix estimated by (2.26), the factor loadings ( , )k itλ τ  may be modeled 

using methods used in the securities markets discussed in Tsay (2005) and Engle (2009). 

 

In the case of a pair of commodities A and B, the volatilities ( , )A
itσ τ , ( , )B

itσ τ and factor 

correlations will be modeled independently from their respective forward curves, followed 

by the estimation of the cross-commodity factor correlation following the analysis 

described by equations (2.12)-(2.20). 

 

Stochastic Volatility Models 
 

In volatile energy commodity and shipping markets, or as futures approach expiration, the 

assumption that the logarithms of the futures prices are Gaussian distributed may need to 

be refined. When the energy commodity is non-storable, as is the case for electricity and 

shipping tonnage, sharp and asymmetric jumps in the spot and futures prices are known to 

occur. Therefore, extensions of the reduced form Gaussian price models developed above 

may be necessary by introducing jumps in the futures by allowing the volatility to follow a 

diffusion or a state-dependent process. 
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The same challenge has been dealt with in the equity markets where the modeling of the 

skew of the call and put prices observed in the market has led to the development of 

stochastic volatility models which may also involve jumps in the equity price and in the 

volatility. These models have been extensively studied and are widely used in practice. 

Most stochastic volatility models perform equally well in modeling the implied volatility 

skew and other departures from the Black-Scholes-Merton assumption of constant 

volatility. At the same time these models offer a reliable representation of the stochastic 

evolution of the underlying equity price. A popular model introduced by Heston (1993) has 

been studied extensively. Another choice is the GARCH model which has been mostly 

studied in a discrete setting. Its continuous time limit and relation to other stochastic 

volatility models, including Heston’s, is studied by Lewis (2005). A distinct advantage of 

Heston’s model is its analytical tractability. It leads to a closed form expression for the 

characteristic function of the underlying equity process. This property in turn leads to 

explicit expressions for equity derivatives defined as complex Fourier integrals which may 

be evaluated by contour integration, quadrature or by Fast Fourier Transforms. Similar 

closed form expressions of the characteristic function and derivative prices exist when 

jumps are allowed in the returns of the underlying process and its stochastic volatility. 

 

In the context of the present multi-factor model of commodity and shipping futures, a non-

Gaussian statistical structure designed to represent fat tails or to model skewness in the 

commodity futures options, is possible by allowing the factor vol+atilities to evolve 

according to the Heston model with jumps in the futures returns. Assuming for simplicity a 

one-factor model for the evolution of the futures price of a commodity or a shipping freight 

rate index and ignoring the effect of the tenor on the factor volatilities, a Heston stochastic 

volatility model with Merton-style jumps in the futures price takes the form under the risk 

neutral measure 

 

 

(2.27) 
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Jumps in the futures process (2.27) are represented by the Poisson process ( )FdJ t which is 

assumed to have an intensity Fλ . The parameters (α,δ) controlling the jump size are 

constants with the random variable ε ~ N(0,1). The parameters of this futures model must 

be calibrated against market prices of futures and futures options. This model has been 

studied for equities and its characteristic function is available in closed form [Heston 

(1993), Gatheral (2006)]. Jumps may also be included in the volatility process in (2.27) as 

in the models considered by Bates (1996) and Pan (2002).  

 

The joint characteristic function of the futures of two correlated commodities each modeled 

by (2.27) also exists in closed form and is discussed by Dempster and Hong (2000) and 

London (2007). This permits the valuation of derivatives either by complex contour 

integration, quadrature or FFT.  

 

State Space Models 
 

An alternative family of models for the treatment of price processes that exhibit 

nonlinearities are state space models where the drift and volatility of the underlying and the 

futures are nonlinear functions of the spot process itself, as opposed to simply functions of 

time. 

 

The mathematical structure of these models is given by the pair of equations for the 

underlying spot process and its futures  

 

 

(2.28)  

 

 

Under the risk neutral measure the drift of the spot process needs to be adjusted by a 

market price of risk in order to ensure that its instantaneous drift is rdt, where r is the risk 

free interest rate. In (2.28) the dependence of the local volatilities ( )Sσ and ( )F Fσ  on the 
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underlying state variables S or F may be assumed to have some analytical form to be 

determined upon calibration against price data from the energy and shipping spot and 

futures markets.   

 

The nonlinear structure introduced by state-dependent models is consistent with the supply 

and demand fundamentals in the power and shipping markets. The latter produce a non-

storable commodity – ton-miles -- where the supply of shipping tonnage may become 

inelastic in tight markets. This topic has been addressed by Adland and Cullinane (2006) 

for the tanker spot freight rates and the model (2.28) was found to represent well the 

underlying spot price process particularly away from equilibrium when the supply and 

demand fundamentals suggest tight markets, analogous to those encountered in the power 

sector [Joskow (2006)]. The model (2.28) is amenable to analytical treatment and has been 

studied by Albanese and Campolieti (2006). Explicit expressions are derived relating the 

underlying spot process and its futures process. The pricing is also presented of exotic 

derivatives as well as of the probability distribution of first passage time across one or two 

barriers. 

 

The stochastic volatility and state space models outlined above may be extended to the 

multi-factor models of commodity forward curves developed above. The models (2.27)-

(2.28) may be applied to the volatility ( , )jtσ τ of the stationary price process of the rolling 

futures contracts with relative tenors jτ given by 

 

 

 

 

 

 

 

(2.29) 
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The factor loadings ( )k jλ τ may be assumed to be independent of time t and just functions 

of the rolling tenor. This enables the modeling of fat tails in the rolling futures returns 

while preserving the multi-factor structure of the forward curve of the energy commodity 

or shipping sector under study. 
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3. CRUDE OIL PRINCIPAL COMPONENTS ANALYSIS (PCA) 
 
 

Prices of crude oil futures contracts trading on NYMEX have been obtained from 

Datastream and constant time-to-maturity prices ),( jtp τ  as observed at a date t were 

obtained using (2.2). These prices led to the construction of the static crude oil forward 

curve observed at three different dates with tenors up to 100 months, illustrated in Figure 

2.1. Figure 2.2 illustrates the spot crude oil price over the period 1/1/2003-1/1/2008. 

 

It may be seen from Figure 2.1 that the crude oil forward curve was trading in 

backwardation on January 1st 2004 and 2008. On January 1st 2006 it was trading in 

contango for the front 20 months followed and in backwardation from the 20th to the 80th 

month. The initial “mean” shape of the forward curve is assumed to be reasonably stable 

and to evolve slowly in time relative to the high frequency fluctuations of the futures prices 

around this mean shape. As discussed in Section 2 the slope of the mean forward curve 

contributes a significant component to the drift of the log-returns of the prices ),( jtp τ  

given by (2.4) and used for the de-trending of their log-returns and estimation of their 

dynamic properties and volatility term structure discussed below. 

 

The de-trended prices evolve through time as stationary random processes, yet their 

evolutions aren’t independent because of the strong correlation between prices, for 

example, of oil futures with relative tenors 12 and 13 months. The consequence of the 

strong correlation of the prices of the rolling tenor futures prices is that the smoothness of 

the initial shape of the forward curve is preserved as prices along the forward curve 

fluctuate. The distribution of the de-trended log-returns is nearly Gaussian as illustrated in 

Figure 3.1 for the relative tenors 6 months, 3 years and 5 years. The co-evolution of the 

log-returns is described by their correlations. The correlation matrix of the constant 

relative-tenor crude oil futures is shown in Figure 3.2. 
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Figure 3.1: Distributions of crude oil 6m, 3y and 5y rolling tenor futures contracts, 
normalized to unit variance, obtained using a Gaussian kernel density estimator 

  
Figure 3.2: Correlation surface of crude oil futures, over the period 1/1/2003-1/1/2008 
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Figure 3.3: Covariance surface of crude oil futures, over the period 1/1/2003-1/1/2008 

 
 
Principal Components Analysis of the Forward Curve 

 
The joint distribution of the de-trended log-returns ln ( , )jd p t τ , assumed to be multivariate 

normal, is described by the NxN covariance matrix displayed in Figure 3.3. For the 1m-

60m crude oil futures, this gives 1830 independent parameters. These would indeed be 

needed if the returns didn’t have any structure. But when the returns are highly correlated 

as is seen in Figure 3.2, Principal Components Analysis (PCA) can be employed to reduce 

the dimension of the covariance matrix to a small set of significant factors. 

 

Following its estimation the covariance matrix is diagonalized by a Principal Value 

Decomposition and the eigenvalues are listed in descending order. They are all positive, 

and generally the first few eigenvalues will explain the major part of the variance of the 

returns. 
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A PCA of the covariance matrix of the crude oil forward curve is performed with maturities 

1 to 60 months, over the 5-year period 1/1/2003 to 1/1/2008. 

 

 

Table 1. Eigenvalues and cumulative variance explained 

 Eigenvalue kλ  Cumulative variance explained 
PC 1 1.0e-2 94 % 
PC 2 5.36e-4 99.3% 
PC 3 4.34e-5 99.7% 
PC 4 1.31e-5 99.9% 

 
 

 

Figure 3.4: Principal component weights (eigenvectors), k=1,2,3 

 

The high correlation between the futures contracts that was observed in Figure 3.2 means 

that only a few principal components are necessary to explain the variations of the forward 

curve. As has been found in earlier studies [Borovkova (2006), Geman (2008), Clewlow 

and Strickland (2000)], these factors correspond to: 
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• A shift in the level of the curve: the coefficients of the first principal component 

all have the same sign, and correspond to a movement in the same direction of all 

the prices. As they are highly correlated, this is the most significant effect. 

However, it is not a parallel shift: the closer maturity contracts, which are more 

volatile, will fluctuate more than the longer maturity contracts 

 

• A tilt of the curve: the second principal component has positive weights for the 

short tenors and negative weights for the long tenors. This means that if the second 

factor shock (dW2 ) is positive, the prompt contracts will shift up and the distant 

contracts will shift down. 

 

• A change in curvature: the third principal component weights are positive for 

prompt contracts (1m-5m), negative for intermediate contracts (6m-36m), then 

positive again for distant contracts (37m-60m). This means that a positive dW3 will 

send short and long-term contracts up, but middle-term contracts down. 

 
 

Analysis of the Factor Returns 
 
 
As has been seen in (2.9), the PCA is a decomposition of the covariance matrix as 

 
(3.1) 
 
 

To relate the factors and the futures returns, let ]][[][ UXP = where [X] is the MxN data 

matrix containing the de-trended log-returns. Then 

 

(3.2) 
 

such that the Pk’s are uncorrelated, with variance kλ . They are the factor log-returns and 

we can express the original price series  X  as a function of them: 

 

[ ] [ ][ ][ ]TU UΣ = Λ

[ ] [ ] [ ] [ ] [ ][ ] [ ] [ ][ ] [ ]T T T TP P U X X U U U= = Σ = Λ
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(3.3)  
 

 

 

 

This shows how to relate the principal components and the futures returns: P is the matrix 

of the N principal component log-returns. Their importance is decreasing, as the variance of 

the k-th column of P is kλ . For this reason, we will only study P1, P2 and P3 which are the 

log-returns of the independent stochastic processes 11 dWλ , 22 dWλ  and 33 dWλ . These 

are just a weighted time series of the futures log returns and can be studied as such, 

independently of the model where they are i.i.d ),0( dtN kλ . 

 
 
 

Table 2. Descriptive statistics of the log-returns of the principal components 

 PC 1 PC 2 PC 3 
Observations 1304 1304 1304 
Mean 0.0077 0.0011 -1.7e-7 
Median 0.0025 8.1e-4 1.1e-4 
Minimum -0.3374 -0.09 -0.04 
Maximum 0.3612 0.13 0.04 
Volatility 
(annualized) 

162 % 37 % 10.6 % 

Skewness -0.056 0.17 0.16 
Kurtosis 3.46 5.57 9.4 
Jarque-Bera (p-
value) 

12.4 (0.0044) 364.3 (< 1e-3) 2250 (< 1e-3) 

Jarque-Bera test Rejected Rejected Rejected 
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Figure 3.5: Distributions of the 3 PCs compared to the normal distribution. The 

distributions are estimated using a Gaussian kernel smoothing and normalized to unit 
variance 
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Figure 3.6: Autocorrelation function of PC 1,2,3. 95% confidence intervals in dashed 
line 
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Figure 3.7: Stability of the volatility of Principal Components 1,2,3: Rolling 100-day 
volatility vs. volatility over entire period 
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Figure 3.8: Stability of the PCA weights (U matrix): U1,2,3 calculated over non-

overlapping 1-year periods; Correspond to Principal components 1,2,3 in Figure 3.4 
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As can be seen in Table 2, the Jarque-Bera test rejects the null hypothesis of normality. But 

the returns are closer to normal than what has been exhibited by Geman and Kharoubi 

(2008) – which admittedly included the 1st Gulf war and other crises – or what is 

commonly observed in stock markets. According to Figure 3.6 they also exhibit some 

autocorrelation – around 0.15 – for the 1-day lag, but the autocorrelation function is known 

to be noisy and we will not give any importance to this finding.  

 

In Figure 3.7 we compare the volatility of the principal components as measured over the 

whole period kλ  to the 100-day sliding window volatility. The assumption in Section 2 is 

that the constant time-to-maturity contracts are a stationary process, and this should entail 

that the principal components also follow a stationary process. While the sampled rolling 

100-day volatility isn’t constant, it doesn’t move far from the long-term average, and in 

particular the 95% confidence interval stays very close to the 5-year volatility. It therefore 

seems reasonable to assume a constant volatility. If a more precise description (for short 

period risk forecasts for example) is needed, GARCH can be introduced. 

 

The above results are presented keeping the weights uik constant, equal to the values 

calculated over 5 years. They depend on the shape of the covariance surface during the 

period. However, consistent with our assumption of stationary returns on the constant time-

to-maturity contracts, this covariance surface is stable, and this is reflected in the stability 

of the weights uik  sub-sampled in 1-year periods, as shown in Figure 3.8. 

 
Principal Components as Indicators of Forward Curve Transitions 
 

As seen from the shape and signs of the principal component weights in Figure 3.8, 

positive returns on the individual principal components will have different effects on the 

forward curve as a whole. The first principal component, giving the most variation, will 

push the whole curve up or down (as seen from 3.3). Figure 3.9 plots the log-price of the 

first principal component which is seen to drift upwards from early 2003 to mid-2006. 

Given the positive sign of the coefficient u1j, plotted in Figure 3.8a as a function of the 

rolling tenor, the upwards drift of the first principal component corresponds to an upward 
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shift of the entire forward curve, the shift being more pronounced for the prompt tenors and 

less pronounced for the distant ones. 

 
The second principal component plotted in Figure 3.10, on the other hand, pushes near 

maturity prices up and long-maturity prices down. This is the result of the sign reversal of 

the coefficient u2j, plotted in Figure 3.8b as function of the rolling tenor. So the second 

principal component has the potential to explain transitions of the forward curve from 

contango to backwardation. If a market is in contango and receives enough negative shocks 

from the second principal component it will go into backwardation. 

 
Figure 3.9: Log-price of Crude Oil Principal Component 1 

 
Figure 3.10: Log-price of Crude Oil Principal Component 2 
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There is a discernible downwards trend of the second principal component log-price plotted 

in Figure 3.10 between early 2004 and January 2007. Figure 3.11 shows the forward curves 

during that period, scaled by the front month price (such that we are only looking at the 

shape, not the level). There is a clear shape change during the period, but it is slow and the 

forward curve isn’t in contango until early 2007. This is partly the result of the downwards 

drift of the second principal component during that period combined with the sign reversal 

of the coefficient u2j for distant tenors. These results show that an indicator of the change of 

shape of the forward curve is the second principal component. This is consistent to what is 

suggested in Borovkova (2006), except that the present study carries a PCA on the log 

returns, not a PCA on the log prices. 

 
Figure 3.11: Forward curves of crude oil (scaled by the front month price) on 

different dates 

 
Seasonality in the Heating Oil and Gasoline Markets 
 

It is well known that the heating oil and gasoline markets are seasonal. This is linked to 

their different consumption during the winter and summer, and the associated building up 

of stocks. This pattern is apparent in the forward curves shown in Figure 3.12. For gasoline 

a pattern can also be spotted in the price series whereas for heating oil the seasonal pattern 

is almost impossible to spot (Figure 3.13). 
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Figure 3.12: Forward curves of RBOB gasoline (left) and heating oil (right) 

Figure 3.13: Price of RBOB gasoline (left) and Heating Oil (right) 

 

When considering a futures contract with fixed expiration date, F(t,T), its time evolution is 

not seasonal – the expiration date is constant, and is either a high-consumption or a low-

consumption month. However, when considering constant time-to-maturity 

contracts ),( τtf the actual delivery date of the contract is varying in time, therefore the time 

evolution will be seasonal. This is reflected in the stochastic differential equation derived in 

Section 2 
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There exists a deterministic part in the futures price drift which arises from the up/down 

slope of the futures curve. To remove this expected evolution, we consider the de-trended 

log-returns: 
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perform the PCA on the de-trended log-returns. 
 
 

Results 
 

When performing the PCA on the original log-returns of heating oil, the 1st and 2nd 

principal components do not exhibit any seasonality. However the 3rd principal component 

picks up the seasonal variations as shown in Figure 3.14. After removing the expected 

returns the 3rd factor does not exhibit any seasonality, and the 1st and 2nd factor do not 

change. 

 

 

Figure 3.14: Time evolution of Heating Oil 3rd principal component – before and after 
de-seasonalizing 
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 3

 

 
Figure 3.15: Time evolution of principal components 2 and 3 of RBOB gasoline before 

and after deseasonalizing 

Figure 3.16: Autocorrelation function of PC2 of RBOB gasoline before and after 
deseasonalizing 

The same procedure is applied to RBOB gasoline. In this case the 2nd and 3rd principal 

components exhibit seasonality – and do not after de-seasonalizing as seen in Figure 3.15. 

It is interesting to note that although the 2nd principal component still seems seasonal, it is 
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not – this is apparent from the autocorrelation functions of the two as displayed in Figure 

3.16. 

 

Several texts [Clewlow and Strickland (2000)] consider the possibility of a seasonal 

variation of volatility. We calculate volatility quarterly for the different factors (after 

deseasonalizing, which doesn’t change the volatility1) and find no evidence of any seasonal 

volatility, as seen in Figure 3.17. 

 

Inter-Commodity Correlations 
 

After having analyzed each market by itself, we turn to the case of several correlated 

markets. We will be concentrating on crude oil and heating oil. For each market, we have 

chosen three principal components explaining the major part of the variations of the 

forward curve. We will call these CL1, CL2, CL3 and HO1, HO2, HO3, respectively. The 

next step, as outlined in Section 2, consists in estimating the correlations between these 

principal components. Over the whole period we already know the intra-commodity 

correlations, so there are only 3x3 = 9 unknowns. We will also be looking at their stability 

during the 5-year period. The correlation matrix over the whole period and 95% confidence 

intervals are shown in Table 3. The correlations CL1-HO3, CL3-HO1 and CL3-HO3 are 

insignificant at the 95% level. 

Table 3. Correlation matrix and 95% confidence intervals of the principal 

components of crude and heating oil 

 CL 1 CL 2 CL 3 HO 1 HO 2 HO 3 

CL 1 1 0 0 0.89 

[0.88, 0.90] 

-0.15 

[-0.20, -0.09] 

-0.02 

[-0.07, 0.03] 

CL 2  1 0 0.29 

[0.24, 0.34] 

0.47 

[0.42, 0.51] 

0.20 

[0.15, 0.25] 

CL 3   1 -0.03 

[-0.09, 0.02] 

-0.16 

[-0.21, -0.10] 

-0.02 

[-0.07, 0.03] 

HO 1    1 0 0 

HO 2     1 0 

HO 3      1 

                                                 
1 This analysis has been carried out before and after deseasonalizing, and there is no significant 
difference: the drift is negligible compared to the standard deviation. 
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Figure 3.17: Quarterly standard deviations of heating oil and gasoline 
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Figure 3.18: Correlations between the crude and heating oil principal components 
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The PCA of the crude oil market enables a fundamental analysis of the statistical factors 

responsible for the evolution of the forward curve. The correlation structure of the forward 

curve has been found to be stable over the period 2003-2008. This leads to the conclusion 

that the dynamics of the crude oil forward curve is governed by the statistical properties of 

a small set of factors which contain information on the economic drivers that control the 

transition of the forward curve from contango to backwardation. Moreover, the cross-

commodity factor correlation allows this analysis to be extended to the study of the joint 

evolution of the forward curves of crude oil, gasoline, heating oil and other energy 

commodities in the crude oil complex. This analysis framework may be used for the design 

of a wide range of risk management and investment strategies in the crude oil and shipping 

markets discussed in Section 8. 
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4. CRUDE OIL SPOT PRICE PROCESS 
 

Following the PCA described in Sections 2 and 3 assume that M dominant factors have 

been identified for a particular commodity forward curve. The price evolution of a futures 

contract associated with this forward curve is governed by the stochastic differential 

equation 

 

 

(4.1) 

 

 

The solution of the stochastic differential equation (4.1) governing the futures price exists 

in closed form and is studied next. This solution suggests explicit evolution dynamics for 

the spot price under the risk neutral measure. In particular the mean reversion of the spot 

price around a long term stochastic trend is revealed in terms of the factor volatilities. The 

degree to which spot energy commodity prices mean revert has been researched 

extensively in the crude oil, natural gas and other commodity markers [Pindyck (1997)]. 

The same has been the case for the shipping markets discussed later in this article. The 

analysis presented below implies that the risk neutral dynamics of the spot commodity 

price exists in equilibrium with the forward markets and that price transmission 

mechanisms exist from futures to spot and vice versa. 

 

The factor volatilities ( , ) ( , ) ( , )i it T t T t Tσ σ λ=  have been estimated from the PCA 

described in Section 3. The solution of the stochastic differential equation (4.1)  under the 

risk neutral measure follows explicitly upon integration from the initial time t=0 to the 

current time t<T 
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It follows from (4.2) that the logarithm of the futures price at time t is Gaussian distributed, 

or 

 

(4.3) 

 

In (4.2)-(4.3) t=0  F(0,T) is the known price at time t=0 of a futures contract that matures at 

T. The futures price at a future time t > 0, F(t,T), is a lognormal stochastic process with 

mean and variance defined by the first and second terms inside the parentheses of 

expression (4.3), respectively.  

 

Invoking the equality of the futures and spot at the expiration, the spot price process 
*( )S t for the commodity under the risk neutral measure, when ( , ) 0t Tμ = , follows from 

(4.2) in the form 

 

 

(4.4) 

 

and 

 

(4.5) 

 

 

The implied spot price process at time t is also lognormally distributed under the risk 

neutral measure at time t with mean and variance given by (4.5).  

 

Upon closer inspection of (4.4)-(4.5) a number of observations can be made about the 

structure of the stochastic process followed by the spot at time t. It depends upon the time 

t=0 price of a futures contract maturing at time t, hence it is a function of the initial shape 

of the futures curve. The price of the spot process at time t is a function of its path from the 

initial time t=0. In particular it depends upon the integral of the time history of the factor 

volatilities. Hence, the stochastic process (4.4) governing *( )S t is non-Markovian, since its 



 53

( , ) ( ) ( , )

ln ( , ) ln ( , ) ln ( )( )

k
k k

k k k
k

t T T t T
T

t T t tT
T

σ κ σ

σ σ τ σ τκ
τ τ

∂
= −

∂
∂ ∂ + ∂

= − = − −
∂ ∂ ∂

�

*

1

2

0 0

( )ln ( )
(0, )

1( ) ( , ) ( , ) ( )
2

M

k
k

t t

k k k k

S t s t
F t

s t s t ds s t dW sσ σ

=

⎛ ⎞
=⎜ ⎟

⎝ ⎠

= − +

∑

∫ ∫

2

0

0

( , )1( ) [ ( , ) ( , ) ]
2

( , )( , ) ( ) ( )

t
k

k k k

t
k

k k k

s tds t t t s t ds dt
t

s tt t dW t dW s
t

σσ σ

σσ

∂
= − −

∂

∂
+ +

∂

∫

∫

price at time t depends upon its entire history over the interval (0,t). Markovian dynamics 

for *( )S t is however possible under restrictions on the time rate of decay of the factor 

volatilities σi(t,T) with respect to the tenor.  

 

The evolution dynamics of the spot price process under the risk neutral measure may be 

derived by rewriting (4.4) in the form 

 

 

 

(4.6) 

 

 

 

Therefore, the logarithm of the ratio of the spot price to the initial shape of the futures 

curve at the current time t=0 is the summation of N independent factor processes. Taking 

the differential of (4.6) the stochastic dynamics of the spot price process under the risk 

neutral measure yields the dynamics of the factors, 

 

 

(4.7) 

 

 

 

Following the analysis of Inui and Kijima (1998) in the interest rate markets, we may 

impose the following restriction on the rate of decay of the factor volatility with respect to 

its tenor 

 

 

(4.8) 

 

 



 54

2 2

0

0

2 2

0

1( ) [ ( , ) ( ) ( , ) ]
2

( , ) ( ) ( ) ( , ) ( )

1 1( ) ( , ) ( )[ ( , ) ( )]
2 2

( , ) ( )

t

k k k k

t

k k k k k

t

k k k k k

k k

ds t t t t s t ds dt

t t dW t t s t dW s

ds t t t dt t s t ds s t dt

t t dW t

σ κ σ

σ κ σ

σ κ σ

σ

= − +

+ −

= − + −

+

∫

∫

∫

*

1
*

*
1

1

ln ( ) ln (0, ) ( )

( ) ln (0, ) ( )
( )

(0, ) (0, ) ( )

M

k
k

M

k
k

L

j j
j

d S t d F t ds t

dS t F t dt ds t
S t t

F t F t g tβ

=

=

=

= +

∂
= +

∂

= +

∑

∑

∑

where ( )k Tκ  is a positive function of T. Upon substitution in (4.7) the factor dynamics 

takes the form 

 

 

 

 

(4.9) 

 

 

 

 

 

It is seen from (4.9) that under the restriction (4.8) the process followed by the i-th factor is 

Markovian with mean reverting dynamics and a mean reversion coefficient ( )k tκ . Its drift 

includes an integral of the volatility over the interval (0,t) and its local volatility is the k-th 

factor volatility when t=T. 

 

Taking the differential of the first equation in (4.6) the dynamics of the spot process under 

the risk neutral measure takes the form 

 

 

 

(4.10) 

 

 

 

The lognormal evolution dynamics (4.10) of the spot process as implied by the entire 

futures curve under the risk neutral measure has a deterministic drift term a function of the 

time rate of change of the known log-futures at a tenor t, as observed at the initial time t=0. 

This drift is common to all factors and is known from the initial t=0 shape of the forward 

curve. The deterministic seasonality of the forward curve is contained in the function 
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(0, )F t , 0<t<T, and may be decomposed into the sum of a smooth term (0, )F t  and the 

sum of L periodic functions ( )jg t  which represent the seasonality pattern of the energy or 

shipping market under study. The mathematical form of the periodic functions ( )jg t may 

vary depending on the commodity market and may take a cosine, exponential or a power 

form as discussed by Pilipovic (2007). The smooth term and coefficients jβ multiplying the 

periodic functions may be determined by curve fitting the forward curve at time t=0. 

 

Each independent factor has mean reverting stochastic evolution dynamics given by (4.9) 

with coefficients that are functions of the factor volatilities, including the coefficient of 

mean reversion ( )k tκ  defined by (4.8). As discussed above, a small number of dominant 

factors explain most of the fluctuations of the futures curves of energy commodities. The 

dominant factor corresponding to i=1 has the highest volatility and therefore represents the 

most volatile shocks to the futures curve. The volatility of the second factor is smaller by 

an amount equal to the ratio of the second to the first eigenvalue of the covariance matrix 

of the rolling futures prices. The rate of mean reversion of the k-th factor under the 

approximation (4.8) for the factor volatility term structure equals minus the derivative of 

the log-volatility of the rolling tenor futures with respect to the tenor. It follows that the 

factor volatilities which are found to posses a stable structure by the PCA contain all the 

necessary information for the derivation of the risk neutral evolution dynamics of the spot 

price over time horizons spanned by the forward curve. This information is useful for the 

derivation of risk management strategies in the energy and shipping sectors involving 

portfolios of the spot asset and its derivatives. 

 

A popular parametric model for the factor volatilities that belongs to the class (4.8) is 

 

(4.11) 

 

According to (4.11) two parameters need to be estimated per factor. A possible drawback 

of (4.11), discussed by Clewlow and Strickland (2000), is that the rate of decay of the 

factor volatilities may be too high for the crude oil and natural gas futures of distant tenors. 
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They are often seen to asymptote to a constant value albeit with decreasing futures 

liquidity. More general parametric models may be tested either by adding a factor specific 

constant in the right-hand side of (4.11) to which the volatility asymptotes for long tenors 

or by introducing more general analytical representations analogous to those used in the 

interest rate markets [Rebonato (2002)] . Alternatively, analytical representations of the 

function ( )k Tκ may be selected that lead to an accurate fit to the factor volatility 

dependence on the tenor derived from the PCA analysis. 

 

The multi-factor spot price process (4.9) is consistent with the spot factor models of Gibson 

and Schwartz (1990), Ross (1997) and Schwartz (1997). The dynamics of the two factor 

spot price model of Schwartz and Smith (2000) is analogous to (4.9). In the present HJM 

framework risk premia do not appear explicitly as in the Schwartz and Smith model. They 

are instead imbedded into the futures prices and in particular the factor volatilities that 

drive the factor dynamics in (4.9). 

 

Spot Price Process at a Distant Horizon 
 

Participants in the commodity markets often face the obligation to deliver an amount of a 

certain commodity at a distant future date which exceeds the tenor of liquid futures 

contracts that trade on public exchanges and forward contracts that may trade over the 

counter. Examples include the purchase of fuel by transportation companies – crude oil by 

refineries, gasoline by transportation companies, jet fuel by airlines, heating oil by 

consumers, natural gas by utilities and bunker fuel by shipping companies. The tenor of 

such contracts and their risk management depends on the market participant’s ability to 

price them and hedge them. Often more than one commodity is involved and the cross-

commodity forward curve correlation must be modeled using the joint PCA developed in 

Sections 2 and 3. 

 

Assume that liquid futures/forward curves are trading for the commodities of interest over 

tenors up to time T that can be used to calibrate the HJM model of the cross-commodity 

futures curves developed in the present study. A long dated commitment has been made to 
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deliver a unit of a commodity at a distant time TD > T. The price of the commodity needs to 

be estimated along with its sensitivity on the factors that impact the forward curve.  

 

Under the risk neutral measure it follows from (4.4) that the stochastic price of the spot 

commodity at time TD is given by the expression 

 

 

 

 

(4.12) 

 

The initial futures price (0, )DF T and factor volatilities ( , )k Ds Tσ at the distant horizon TD > 

T may be estimated by extrapolation from prices obtained from liquid futures contracts as 

described earlier.  

 

Given these estimates, the following observations follow from (4.12). The expectation at 

the initial time t=0 of the spot price process at the distant horizon TD under the risk neutral 

measure is (0, )DF T . This is consistent with the definition of the futures price process as a 

martingale under the risk neutral measure. The uncertainty in this estimate is contained in 

the exponential term in (4.12) which as seen at the initial time t=0 is a random variable 

with mean equal to unity and a variance which is a function of the integrals of the factor 

volatilities estimated from the PCA of the commodity market under study. Therefore the 

uncertainly in (0, )DF T as the expected distant price of the spot commodity under the risk 

neutral measure may be extracted from the information contained in the entire forward 

curve studied by a PCA. Similar considerations apply to the expected spot price at a future 

time within the range of tenors of traded futures contracts by simply substituting T in 

(4.12).  
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5.  OPTIONS ON SPOT, FUTURES, SPREADS AND BASKETS 
 

It follows from the analysis of the previous section that the time-t price process followed by 

the logarithms of the futures price F(t,T) and the risk neutral spot price *( )S t are Gaussian. 

Assume here that t is the initial time, T is the tenor of the futures contract and introduce an 

intermediate time τ such that t< τ < T.  This allows the futures price to be cast in the form 

 

 

(5.1) 

 

 

Assume a deterministic term structure of interest rates and denote by B(t,T) the price at 

time t of a zero coupon bond that pays $1 at its maturity T.  

 

Options on Spot 
 

The time t price of a call option with strike K that expires at time T written on the spot 

process *( )S t  may be derived by first setting τ=T in (5.1) 

 

(5.2) 

 

It follows from (5.2) that under the risk neutral measure the spot is lognormally distributed 

at the expiration of the option. Therefore the Black-Scholes formula may be applied 

directly to price a European call option written on the spot 

 

 

(5.3) 
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The price of a European put follows from put-call parity 

 

 

(5.4) 

 

 

In (5.3)-(5.4) N(z) is the cumulative Gaussian probability distribution function and its 

derivative is the standard Gaussian density with unit variance. 

 

Options on Futures 
 

The price of a European call option written on a futures contract may be derived along 

similar lines. The time t price of the call option with strike K that expires at time τ written 

on a futures contract that matures at time T > τ follows by observing from (5.1) that the 

time τ price of the underlying futures contract is lognormally distributed.  

 

The price of a call on this futures contract with strike K follows from (5.1) and the Black 

formula 

 

 

 

(5.5) 

 

 

   

 

 

The put price follows from call-put parity 

 

(5.6)  
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Following a PCA and the estimation of the time dependence of the factor volatilities, the 

underlying futures and spot price processes and European options prices follow explicitly 

from expressions (5.1)-(5.6). They are all seen to be functions of the integrals of the factor 

volatilities over the time interval from the current time t to the expiration of the option 

contract.  

 

Spread Derivatives of Correlated Commodity Futures 

 
A number of cross-commodity transactions occur in the energy and shipping markets. Their 

value depends upon the differential of the spot or futures prices of two commodities. A 

typical example is the crack spread in the crude oil/refining industry which depends on the 

difference between the price of refined products and the price of crude oil. An example 

from the shipping industry involves the price differential between the “output commodity” 

the ton-miles and the input commodity the bunker fuel needed for the propulsion of cargo 

vessels. 

 

In other energy transactions the spread between the prices of the same commodity at two 

distinct geographical locations are involved. Assuming that liquid futures or forward 

markets exist for the same commodity at each geographical location, they may be used for 

the valuation of energy transmission assets in terms of the futures spread option prices 

derived in the present Section. Similar considerations apply to the valuation of contracts 

involving the seaborne transportation of crude oil and products in tankers between two 

geographical locations where distinct futures or forward markets exist for the liquid energy 

cargo. Such seaborne transportation contracts have imbedded optionalities which result 

from the flexibility in the speed of the vessels, the choice of the destination port and the 

possible use of tanker fleets as substitute storage tanks at low or zero vessel speeds. These 

decisions may be taken in a continuous-time dynamic and value maximizing setting by 

using the pricing results of the present Section and stochastic dynamic programming. 

Related considerations apply to the transportation of Liquefied Natural Gas (LNG) a 

commodity of growing significance for which futures markets and the delivery 

infrastructure of the physical at expiration are not yet well developed. 
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For the pricing of options on spreads the joint evolution dynamics of the futures of 

commodities A and B must be considered. Using the results developed in Section 2 the 

futures prices of the two commodities follow upon integration of (2.12) from the current 

time t to time τ with t<τ<T1<T2. Under the risk neutral measure the drifts in (2.12) vanish 

and we obtain 

 

 

(5.7) 

 

 

 

It follows from (5.7) that the marginal distributions at time τ of the futures prices of 

commodity A with tenor T1 and commodity B with tenor T2 are lognormal. Their 

logarithms are marginally normally distributed with means and variances given below 

 

 

 

(5.8) 

 

 

The covariance of two log-futures processes of the same commodity A with tenors T1 and 

T2, follows from (5.7) in the form 

 

 

 

 

 

(5.9) 
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Expression (5.9) offers an explicit connection between the factor volatilities estimated by 

the PCA of commodity A described in Section 2 with the covariance and hence the 

correlation of two futures contracts with distinct tenors trading on the forward curve of the 

same commodity. The variance of each futures contract is given by (5.8) and their 

covariance is given by (5.9) is all the information needed to price options written on the 

spread of the two futures contracts discussed below. 

 

The covariance of the log-futures processes of commodities A and B with tenors T1 and T2 

respectively, follows in the form 

 

 

 

(5.10) 

 

 

 

The derivation of (5.10) used (2.13) and the factor volatilities and cross-commodity factor 

correlations estimated by the two-step PCA of the correlated commodity markets under 

study. Equations (5.7)-(5.10) complete the derivation of the quantities necessary for the 

pricing of options on cross-commodity futures spreads.  

 

The covariance between the futures contracts trading on the forward curve of a single, two 

or multiple correlated commodities may be used to price options written on baskets of the 

underlying spot commodities, portfolios of futures contracts and options on spreads 

involving spot commodities and their futures. Under the present joint log-normal 

framework explicit expressions for the price of options on spreads with finite strikes, and 

options on baskets may be carried out easily using efficient numerical integration as 

described below. These results are valuable to oil producers, refineries, tanker shipping 

companies, airline companies and other market participants exposed to the price 
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differential of crude oil, its refined products and the freight rates of tankers transporting 

liquid energy cargoes. 

 

In a general setting, consider a call option with strike K and expiration τ written on the 

spread of two futures contracts of commodities A and B with tenors T. Its price is given by 

the expression  

 

 

(5.11) 

 

 

The constant H is included to denote the relative weighting of the two futures contracts and 

may represent a volume or heat rate adjustment of an input/output commodity which may 

be crude oil/gasoline/heating oil in the case of a refinery or fuel oil/tanker freight rate in the 

case of shipping. 

 

A closed form expression for the call option defined above exists under the present 

Gaussian statistical structure and has been derived by Pearson (1995). It follows from (5.7)-

(5.10) that the log-futures of commodities A and B are jointly normally distributed at the 

expiration of the option at time τ. Assuming a common futures tenor, the covariance of the 

two log-futures is given by expression (5.10). It is known from Gaussian statistics that if 

the marginal distributions are Gaussian the joint distribution is joint Gaussian defined in 

terms of the marginal variances and the covariance defined by (5.10). Another property of 

joint Gaussian statistics is that the distribution of one variable conditional on the value of 

the other is also Gaussian. 

 

Define  

 

(5.12) 
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Let ( , )A Bf z z be their joint Gaussian distribution at the time-τ expiration of the option.  

Under the risk neutral measure the price of the option follows from the definition of 

expectation from probability theory 

 

(5.13) 

 

For all intents and purposes expression (5.13) is explicit since it may be evaluated by 

quadrature. However it may be reduced further by invoking the definition of the 

conditional probability distribution 

 

(5.14) 

 

Upon substitution in (5.13) we obtain the nested integrals 

 

(5.15)  

 

The inner integral with respect to the variable zA treats zB as a constant. Given that the 

conditional distribution of zA is normal, by virtue of this unique property of Gaussian 

statistics, its exponential is lognormal and the inner integral is a call option written on zA 

with a strike BzHe K+  which can be evaluated by Black-Scholes. The outer integral can 

then be evaluated by quadrature over all values of zB. The put option follows by put-call 

parity. 

 

The prices for the call and put spread options written on the futures of two commodities 

may be readily applied to options written on spreads involving the spot commodity by 

invoking the relationship of futures and spot as the tenor tends to zero. They may be used 

to value crude oil, products and shipping assets involving both the physical and paper 

markets, develop dynamic hedging policies and identify arbitrage and investment 

opportunities. 
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Options on Commodity Futures Baskets 
 

The analysis above extends easily to the pricing of options written on a basket of futures 

written on correlated commodities with known weights. The value of this option is of 

interest to refineries interested to price and hedge the differential of an optimal basket of 

their products -- fuels produced from the refining process – relative to the value of the input 

commodity -- crude oil. The explicit pricing of such a basket option will enable a refinery 

to determine the value maximizing composition of a basket of output fuels in various 

market conditions. 

 

Assume that at the current time t, the commodity basket consists of fuels with weights ai 

for which liquid futures ( , )iF t T with common tenor T are assumed to trade. The value of a 

European option written on the basket with strike K and expiration time τ <T is defined as 

follows 

 

(5.16) 

 

 

Positive weights correspond to the output commodity products and negative weights 

correspond to the input commodity. 

 

The futures price of each commodity is lognormally distributed and each commodity pair is 

jointly lognormally distributed. Invoking a standard result in Gaussian statistics, the log-

futures prices zi of the N commodities in the basket at time τ are jointly Gaussian 

distributed with probability distribution 1 2( , ,..., )Nf z z z . The covariance matrix of the 

random variables zi is determined in terms of the variances and pairwise covariances using 

the results derived earlier in this Section. The value of the basket option follows from the 

definition of expectation in multivariate Gaussian statistics 

 

(5.17) 
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The evaluation of the multiple integral in (5.17) may be carried out directly by quadrature 

or by invoking the definition of conditional distributions in multivariate Gaussian statistics 

as in (5.14)-(5.15). 
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6. SHIPPING FREIGHT RATE FUTURES AND OPTIONS 
 

The market for shipping derivatives, Forward Freight Agreements (FFAs) and freight 

futures, has experienced rapid growth over the past two decades. Forward Freight 

Agreements are bilateral forward contracts that trade over the counter. The flexibility of 

OTC transactions allows for the design and pricing of FFA contracts tailored to the risk 

exposures of shipping companies, charterers, banks and investors. The drawbacks of 

tailored FFAs are that they entail credit risk, they may not fully protect the identity of the 

counterparties and may not be easy to reverse at low cost prior to expiration. Consequently 

the popularity of shipping freight futures that trade on IMAREX has grown. As with 

commodity futures they offer protection from credit risk, protect the identities of 

counterparties and allow positions to be reversed prior to expiration hence enabling the 

implementation of dynamic hedging strategies. Concerns about the credit risk present in 

OTC FFAs has led to the emergence of Hybrid FFAs that are cleared through a clearing 

house, thus mitigating credit risk while maintaining some of the flexibility of OTC FFAs. 

Hybrid FFAs are currently clearing in the London Clearing House Clearnet (LCH.Clearnet) 

and in the Singapore Exchange AsiaClear  (SGX Asia Clear). 

 

In the absence of credit risk, under deterministic interest rates and for the same contract 

specification the price of an FFA and a freight futures are equal. Therefore the remainder of 

this section will consider the modeling and arbitrage pricing of freight futures, with the 

understanding that the same conclusions apply to FFAs. The forward curve model 

developed in the remainder of this section is based on tanker freight futures data obtained 

from IMAREX. An identical method may be used for the modeling of the dry bulk forward 

curve using data obtained form IMAREX or from the OTC market. The correlation 

between forward curves of individual routes within the tanker and dry bulk markets, may 

then be carried out by using the two step PCA method developed in Section 3 for the crude 

oil, gasoline and heating oil markets.  

 

Tanker freight futures contracts trading on IMAREX settle against the arithmetic average 

of an underlying freight rate index for the tanker route under study compiled daily by the 
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Baltic Exchange or Platts. These are flow forward contracts which stipulate the cash 

delivery of the average of the underlying freight rate index over settlement periods that 

span the 6 front months, the 6 front quarters and the 2 front years. The last trading day of 

monthly futures contracts is the last day in the settlement period – a month -- when the long 

futures position receives from the short position the average of the underlying index over 

the month. The last trading day of the quarterly contracts is the last day of the first month 

of the quarter when the long position receives from the short the average of the index over 

the month and pays the futures price. The remainder of the settlement of the quarterly 

contract over its last two months is received by the long position in two monthly 

installments at the end of each of the two remaining months.  Finally, the last trading of the 

yearly contract is the end of January when the long position receives from the short the 

average of the index over the month of January for the futures price. The remainder of the 

settlement of the yearly contract over the remaining eleven months of the year is received 

by the long position in eleven monthly installments at the end of each month equal to the 

monthly average of the underlying index. Dry bulk freight futures also trade on IMAREX 

with the same monthly, quarterly and yearly contract structure. 

 

The design of the IMAREX freight futures contracts is such that the front monthly 

contracts with high liquidity overlap with the quarterly contracts with lower liquidity which 

in turn overlap with the yearly contracts. Another attribute of the contract design is that the 

settlement occurs over consecutive monthly sub-intervals for the quarterly and yearly 

contracts. In frictionless markets absence of arbitrage enforces restrictions on the relative 

pricing of the monthly quarterly and yearly contracts. These restrictions may be enforced 

by introducing a sequence of monthly futures contracts expiring at the end of each month 

and with the longest monthly expiration coinciding with the end of December expiration of 

the most distant yearly contract. The settlement price of each monthly contract paid by the 

short is the average of the underlying index over the index days of the respective month. 

Market prices for these generic futures are available from IMAREX for the front six 

months. The prices of the quarterly and yearly contracts may be expressed as weighted 

averages of the prices of these monthly securities over their tenor as discussed below. 

Consequently, the monthly futures contracts may be used as the baseline securities to 
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construct the arbitrage free forward curve of the freight futures contract under study as 

described below. 

 

Following the notation introduced in earlier Sections, assume that t=0 is the initial time, t is 

the current time, Ti, i=1,…,N are the expirations of the monthly futures contracts which 

coincide with the end of each month and c is the length of a month. Denote by S(t) the 

price of the underlying tnaker freight rate index and assume that the risk free interest rate is 

constant and equal to r. 

 

Assuming a continuous time setting, the monthly futures settles continuously against the 

average of the spot freight rate index over the monthly settlement period (T-c, T), where T 

is the tenor of the shipping futures contract and c is the length of a month. The contract 

cashflow is assumed to occur at the end of the month. The arbitrage price of the monthly 

futures contract under the risk neutral measure in the pre-settlement period is given by the 

expression 

 

 

 

(6.1) 

 

 

 

In the settlement period of the monthly futures contract, T-c <t<T the arbitrage price of the 

futures contract is given by the expression 

 

 

 

(6.2) 
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It follows from (6.2) that at its expiration t=T the monthly futures contract settles at the 

average of the underlying spot index over the monthly period T-c < t < T given by the last 

expression in (6.2). This average is the amount received by the long position at time t=T. 

Under constant interest rates and the contract cashflow occurring at the end of the 

settlement period, the prices of futures and forward contracts are equal. 

 

Prices of the monthly tanker freight futures defined by (6.1) and (6.2) in the pre- and 

settlement periods are quoted on IMAREX for the front six months. It is assumed that 

prices in the settlement period are volatile as the futures contracts are being offset and only 

prices in the pre-settlement period given by (6.1) will be used for the statistical analysis and 

PCA of the forward curve. The following abbreviated definition of the monthly futures 

price will be used in the remainder of this section 

 

 

(6.3) 

 

 

The monthly futures price ( , )SF t T at time t stipulates the following exchange of cashflows 

at the contract expiration at time T. The long position receives from the short position the 

difference between the average of the freight rate index over the month and ( , )SF t T , the 

futures price the long position locked at the contract inception at time t. 

 

Consider the quarterly futures price 1 2 3( , , , )Q
SF t T T T at time t that expires at time 3T  the end 

of the third month in a futures quarter. Denote by 2 3 1 2 1, ,T T c T T c t T c= − = − < − .  A long 

position in the quarterly futures contract established at time t for the price 1 2 3( , , , )Q
SF t T T T , 

ensures that the long position will receive at the end of each month in the quarter the 

difference between the average of the freight rate index during that month 

and 1 2 3( , , , )Q
SF t T T T . Cash flows under the IMAREX quarterly futures contract occur at the 

end of each month of the quarter, namely at times 1 2 2 3 3, ,T T c T T c T= − = − , as opposed to 
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just the end of the quarter at time 3T . Discounting these cashflows to the present time t 

under the risk neutral measure leads to the arbitrage futures price of the quarterly contract 

relative to the arbitrage price of the monthly futures price given by (6.1) and (6.3). 

 

The present value of the fixed cashflows at the end of each month in the quarter, equal to 

the futures price 1 2 3( , , , )Q
SF t T T T , is given by the expression 

 

 

 

The present value of the variable cashflows at the end of each month of the quarter, equal 

to the risk neutral expectation of the average of the freight rate index over the month 

discounted to the present time t, is given by the expression 

 

 

 

 

 

 

 

 

Since it is costless to enter a futures contract at time t, absence of arbitrage requires that the 

two present values derived above are equal. Therefore the risk neutral price of the quarterly 

futures contract follows in the form 
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Therefore the arbitrage price of the quarterly futures contract is the weighted sum of the  

prices of the three consecutive monthly futures contracts. The two front quarterly contracts 

may overlap with the front six monthly futures contracts trading on IMAREX. 

Consequently absence of arbitrage requires that equation (6.4) holds if the quarterly and all 

monthly contracts in (6.4) trade.  

 

In an analogous manner, the arbitrage price of the yearly futures contract is the weighted 

sum of twelve consecutive monthly futures contracts, or 

 

 

(6.5) 

 

The yearly futures contract may also be expressed as the sum of quarterly futures contracts 

by combining the definitions (6.4) and (6.5). It also follows from (6.4) and (6.5) that a long 

position in a quarterly or yearly futures contracts is equivalent in the absence of arbitrage to 

a weighted portfolio of futures positions in the monthly contracts. Therefore, the latter will 

hereafter be considered the generic contracts and their lognormal stochastic dynamics is 

modeled below. Options written on freight rate futures contracts also settle monthly, 

therefore their pricing will be shown to follow directly from the lognormal dynamics of the 

monthly futures prices using the Black formula. 

 

The arbitrage pricing of shipping freight rate futures contracts given by (6.4) and (6.5) is 

analogous to similar flow futures contracts trading in the electricity markets, discussed by 

Benth and Koekebakker (2008). In general the arbitrage pricing relations derived in this 

Section for futures and options apply to other commodity markets where flow futures and 

options trade aiming to mitigate volatility risk via the averaging of the underlying over 

settlement periods of varying lengths. 
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Futures Price Process of Tanker Freight Rate Index 
 

The first step towards the statistical analysis of the IMAREX tanker freight forward curve 

is the estimation of the initial monthly futures prices 1( 0, ), 1,..., , 0S iF t T i M t T c= = = < − , 

where M is the tenor of the last month in the distant yearly contract. The steps involved in 

this task are described in Section 7. 

 

Following the estimation of the initial shape of the forward curve constructed out of its 

monthly contracts, its risk neutral dynamics may be modeled as in the crude oil markets.  It 

follows that under the risk neutral measure the monthly freight futures are assumed to 

satisfy the stochastic differential equation 

 

 

(6.6) 

 

 

 

The risk neutral log-normal dynamics given by (6.6) is directly analogous to the risk 

neutral dynamics of the futures contracts in the crude oil markets. The difference is that the 

time t is here assumed to be at least a month away from the tenor jT of the monthly futures 

contract. The factor volatilities in (6.6) may again be estimated by implementing the PCA 

analysis developed in Sections 2-3 for the crude oil markets using the prices of the monthly 

futures contracts ( , )S jF t T  estimated by the interpolation procedure outlined above and 

presented in more detail in Section 7.  

 

The factor volatilities estimated from the PCA analysis presented in Section 7 are based on 

market prices of futures contracts trading up to the beginning of the settlement period. 

Market prices within the settlement period may be too volatile to be reliable for 

econometric fitting. Yet the validity of the stochastic differential equation (6.6) may be 
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extended within the settlement period by observing that the volatility of the futures price 

( , )S jF t T tends to zero as t approaches the contract maturity. This follows by taking the 

differential of the first equation in (6.2) 

 

 

(6.7) 

 

It follows from (6.7) that the volatility of the left-hand side of (6.7) tends to zero as the 

range of integration in the right-hand side tends to zero, as t approaches T and under certain 

regularity conditions for dF . Therefore a reasonable approximation of the factor volatility 

in the settlement period is 

 

(6.8) 

 

The use of approximation (6.8) in (6.6) completes the specification of the factor volatilities 

in the settlement period and until the contract expiration. This will enable the derivation of 

the stochastic differential equation governing the spot price process as implied by the 

traded futures prices. It will also be used to derive explicit expressions for the price of 

Asian options written on tanker freight futures. Both topics are discussed below. 

 

Spot Price Process of Tanker Freight Rate Index 
 

The form of the stochastic differential equation (6.6) is identical to the equation (4.1) 

governing the stochastic evolution of the futures contracts in the crude oil markets, with the 

drift set equal to zero in (4.1) under the risk neutral measure. Therefore the results derived 

in Section 4 apply directly to the shipping market.  

 

Under the present multi-factor model of the tanker freight rate futures, the futures price and 

the implied price of the spot freight rate index averaged over a month follow in the form  
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(6.9) 
 

As expected the implied evolution dynamics of the average of the underlying spot index is 

lognormal and in analogy to the crude oil markets it is driven by a small number of factors 

with volatilities estimated from the PCA analysis described in Section 7 and their 

approximation (6.8) within the settlement period of the monthly freight futures contracts. 

 

Using the results of Section 4 the stochastic evolution of the factors driving the spot freight 

rate index may be derived using (4.6)-(4.10). The rate of mean reversion of each factor may 

be determined by using the same reasoning as in the crude oil markets. 

 
The freight rate index price at a distant horizon also follows directly from (6.9) under the 

risk neutral measure in the form  

 

 
 

(6.10) 

 

As in the crude oil markets the expected distant price of the spot freight rate is the futures 

price (0, )S DF T which for DT T> may be extrapolated from the initial monthly futures curve 

estimated above. The variance of this estimate is supplied by the exponential term in (6.10) 

which is a function of the factor volatilities estimated by the PCA analysis described in 

Section 7 and extrapolated to the distant horizon DT .  
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The spot tanker freight rate process is known to be volatile with log-returns that may 

exhibit fat tails. This non-Gaussian behavior may be modeled as in the crude oil market 

discussed in Section 2. 

 

Correlated Route Shipping Forward Curves 
 

Shipping FFAs and futures trade for a number of shipping sectors and routes. Each of these 

shipping market segments have their own forward curves which are correlated. Therefore 

their joint evolution needs to be modeled along the lines of the correlated forward curves in 

the crude oil market. 

Consider routes A and B of the tanker or dry bulk shipping market with monthly futures 

evolution dynamics given under the risk neutral measure by the stochastic differential 

equations 

 

 

 

 

(6.12) 

 

 

 

 

The factor volatilities and cross-route factor correlations may be estimated by a two-step 

PCA analysis using the method described in Section 7, combined with the treatment of the 

cross-commodity correlation in the crude oil markets.  

 

Assuming that t is the current time, the time τ price of the respective generic futures 

contracts is given by the familiar relations 
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(6.13) 

 

 

 

The resulting joint lognormal evolution dynamics of the shipping futures 

1 2( , ), ( , )A B
S SF T F Tτ τ enables the pricing of options written on cross-sector shipping futures 

spreads using explicit formulae or efficient numerical techniques analogous to those in the 

crude oil markets. The availability of the prices of such spread options enables the 

valuation of a wide range of shipping assets discussed in Section 8. 

 

Time Charter Rates (TC) 

 
The time charter rate is the constant rate a shipowner receives from the owner of the cargo 

being transported over the charter period. The TC rate may be expressed in terms of the 

generic freight futures contract ( , )F t T defined in (6.1). Denote by TC(t,T) the TC rate at 

the current time t for a time charter that ends at a future time T with duration T-t. Assume 

that the TC rate is paid continuously to the shipowner and that the futures contracts 

( , )F t T trade in a frictionless market. Absence of arbitrage requires that the revenue from 

entering at time t into a sequence of positions in the generic futures contracts ( , )F t T over 

the duration of the charter must be equal to the revenue from the charter contract.  

 

 

 

(6.14) 
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The TC rate may also be expressed in terms of the prices of traded weekly, monthly, 

quarterly or yearly futures contracts that settle at the end of the respective periods by sub-

dividing the period of the time charter into the sub-periods of the corresponding contracts 

and discounting along the lines used to derive (6.4) and (6.5). 

In (6.14) the time charter was assumed to start at the current time t. The same reasoning 

may be used to derive the arbitrage futures price at the current time t of a time charter to be 

entered into over a future period 1 2( , )T T t> . It follows that 

 

(6.15) 

 

 

Again the arbitrage price given by (6.15) may be expressed in terms of the prices of traded 

freight rate futures that settle weekly, monthly, quarterly of yearly. 

 

Asian Rate Options on Monthly Freight Futures 
 

The multi-factor model of the stochastic evolution of the monthly freight rate futures (6.6)-

(6.8) forms the basis for the pricing of shipping options written on the futures and FFAs 

which are trading on IMAREX, Asia Clear SGX and OTC. These are average price Asian 

options with monthly expirations which settle at the average of the underlying index at the 

end of each month. They may be priced explicitly using the present multi-factor HJM 

model of the shipping futures using Black’s formula. 

 

Assuming that t is the current time, the monthly shipping futures at some future time τ<T is 

available explicitly in the familiar form 

 

(6.16) 

 

A European call option written on ( , )SF Tτ with strike K and expiration at τ<T follows 

directly from Black’s formula 
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(6.17) 

 

 

 

 

The put price follows from put-call parity 

 

 

(6.18) 

 

 

The formulae (6.16)-(6.18) are new explicit pricing formulae for Asian freight rate options 

based on a multi-factor log-normal model of the futures. A single factor Asian option 

pricing model was recently proposed by Koekebakker, Adland and Sodal (2007) which is 

based on a diffusion model for the freight rate spot price. Other Asian option pricing 

models based on a diffusion model for the underlying include Turnbull and Wakeman 

(1991) and Levy (1992). 

 

In the special case Tτ = expressions (6.17-(6.18) reduce to the price of Asian freight rate 

options trading on IMAREX. In this case it follows from the last equation in (6.2) and the 

definition of the call option (6.17) that ( , )SF T Tτ = is the arithmetic average of the 

underlying spot index over the monthly settlement period.  

 

Existing methods for the pricing of Asian options have relied on the development of 

explicit or approximate formulae based on a diffusion model for the evolution of the 

underlying index [Turnbull and Wakeman (1978), Levy (1990)]. The price of Asian calls 

and puts derived above for monthly futures are explicit and the result of the assumption that 
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the futures contracts that settle against the arithmetic average of the underlying index 

follow a multi-factor lognormal diffusion which enables the direct application of Black’s 

formula. A key input to the present price of Asian derivatives is the factor volatilities that 

appear in (6.16), estimated by the PCA of the commodity or shipping market under study 

and approximated in the settlement period using (6.8). Consistently with the experience 

gained from the pricing of equity options, the factor volatilities are the key inputs to the 

explicit Black-Scholes and Black formulae and effort must be devoted to their proper 

modeling and estimation.  

 

Where liquid futures prices exist they can be modeled using the PCA developed above for 

the crude oil and tanker shipping markets. When the futures markets are not very liquid the 

price of the spot index which is quoted daily may also be used with (6.9) to estimate the 

factor volatilities. Another advantage of the Asian option pricing formulae (6.17)-(6.18) is 

that they may be hedged using the traded underlying futures contract. In the simplest case 

the hedge ratio of a delta hedge is the derivative of (6.17) or (6.18) with respect to ( , )SF t T . 

 

Asian Options on Quarterly and Yearly Freight Futures 

 
Options may also be written on the quarterly and yearly futures contracts with arbitrage 

free prices given by (6.4) and (6.5) in terms of the monthly futures contracts. The payoff of 

a call option written on a quarterly contract with strike K is given by the expression 

 

 

 

(6.19) 

 

 

 

 

As in the case of the monthly freight options contracts the last day of trading of the 

quarterly options contract is assumed to be the beginning of the quarter or the time 
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1t T c= − . If follows for the definition of the payoff of the call option written on a quarterly 

futures contract that its price is given by the sum of the options prices written on the 

sequential monthly contracts, or 

 

 

(6.20) 

 

The price of the yearly options contract follows in the form 

 

(6.21) 

 

The price of puts follows by put-call parity. If follows that the prices of the calls and puts 

written on monthly, quarterly and yearly freight rate contracts are available explicitly in 

terms of the Black price of the monthly options. This is the result of the assumption that the 

monthly futures price follows a lognormal diffusion and no need arises to assume a 

particular diffusion model for the quarterly or yearly futures process.  

 

The modeling burden therefore falls upon the development of a robust multi-factor 

lognormal diffusion model governing the evolution of monthly futures prices. The 

parameters in that model that must be calibrated to the market data are the factor volatilities 

which are estimated in the next section for a major tanker shipping route as in the crude oil 

markets using a PCA. Where departures from normality are observed, as is the case in the 

shipping and electricity markets, the factor volatilities may be assumed to follow a 

stochastic process with jumps. The present modeling framework that relies on Black’s 

formula also enables the estimation of the term structure of implied volatility from traded 

options contracts. Drawing upon extensive studies in the equities markets, the smile of the 

implied volatility surface suggests refinements of the diffusion process driving the 

underlying. More accurate multi-factor models for the process followed by the volatility 

may be derived using recent work on equity index options calibrated against variance 

swaps [Overhaus et. al. (2007), Bergomi (2009)].  
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7.  PRINCIPAL COMPONENTS ANALYSIS OF TANKER FREIGHT  
RATE FUTURES 

 

A principal components analysis was carried out for the tanker freight rate futures trading 

on IMAREX for the liquid contract TD3 corresponding to the Baltic Freight Index with the 

following specification: Very Large Crude Carriers (VLCC); Middle East to Japan; Cargo 

Size 260,000 metric tons. TD3 daily freight rate futures prices defined as in Section 6 have 

been obtained from IMAREX from April 2005 to February 2009 and used for the PCA 

described below. 

 

The prices are quoted in terms of the Worldscale of the year of the contract. Worldscale is 

set yearly by the Worldscale association, and reflects the costs of transporting a ton of oil 

from one port to the other during the year before. For example, Worldscale 2009 for route 

TD3 is based on the costs in the period October 2007 to September 2008, and is effective 

from 1 January 2009 to 31 December 2009. This is WS100 and is in dollars per ton. 

WS120 means that the price of the contract is 120% of that cost. 

 

Two problems arise from this scale when dealing with futures. First, the forward curve on a 

given date contains contracts that aren't quoted in the same unit (as seen on 2/6/2009, there 

are contracts for 2009 and contracts for 2010). This can be an issue when comparing 

contracts with each other. Second, the Worldscale for 2010 isn't known before late 2009, 

and thus the equivalent $/ton price can only be assessed based on forecasts of the flatrate. 

This is an issue in times of volatile markets: for example, the Worldscale for TD3 went up 

37% from 2008 to 2009. This definition of Worldscale and its uncertain value in 2010 and 

beyond is perhaps a reason for reduced liquidity of the distant quarterly and yearly tanker 

futures contracts. This is not an issue with the dry bulk futures prices which are quoted in 

units equivalent to the spot rate and enjoy higher liquidity for distant tenors. Time charter 

(T/C) basket futures contracts also trade on IMAREX for the dry bulk market. Their 

definitions relative to the spot futures contracts is given by expressions (6.14)-(6.15). 
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Figure 7.1:. Forward curves of TD3 on different dates 

 

Figures 7 plot the TD3 forward curves on different dates. The length of the horizontal bars 

in the Figures illustrates the length of the settlement period (monthly, quarterly, yearly) and 

the height of the bars denotes the corresponding futures price. The mid-points of the bars 
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are connected by a smoothed curve that illustrates the initial shape of the TD3 forward 

curve. 

 

As expected the liquidity of the prompt monthly futures is higher that that of the quarterly 

and yearly contracts. The settlement of the monthly futures spans the month prior to the last 

settlement date and as discussed in Section 6 prices prior to the first day of the settlement 

period have been used in the present study. Figure 7.2 plots the futures price with a 

constant relative tenor of 2 months from April 2005 to February 2009. This futures price is 

the most prompt rolling tenor futures contract used in the present study and may be viewed 

as an approximate smoothed price of the underlying TD3 Baltic Index 

 
Figure 7.2: Price of the TD3 2m contract from April 2005 to February 2009 

A qualitative inspection of Figure 7.2 indicates that the TD3 2 month futures is mean 

reverting with sharp upwards spikes possibly the result of a tight tanker market. The 

probability distribution of the log-returns of the 2 and 5 month rolling tenor TD3 futures is 

plotted in Figure 7.3 and compared to the standard normal distribution. Both distributions 

are leptokurtic indicating a departure from normality that needs to be accounted for in the 
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modeling of the log-returns of the futures by introducing stochastic volatility models 

discussed in Section 2. 

 
Figure 7.3: Distributions of the log returns on TD3 2m, 5m, normalized to unit 

variance, obtained using a Gaussian kernel density estimator 

 

 
Figure 7.4. Correlation surface of TD3 futures, over the period 4/4/2005-2/6/2009 
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Figure 7.5. Covariance surface of TD3 futures, over the period 4/4/2005-2/6/2009 

 

Figures 7.4 and 7.5 illustrate the correlation and covariance, respectively, of the futures 

contracts with rolling tenors ranging from 2 to 5 months. Both Figures indicate smooth 

declining surfaces which were used to carry out the PCA analysis described next. 

 

Table 1 lists the first four eigenvalues obtained from the PCA analysis along with the 

percentage of the fluctuations explained by each principal component. As expected a small 

number of orthogonal factors is again sufficient for the description of the dynamics of the 

TD3 tanker freight rate forward curve up to a rolling tenor of 5 months. The less liquid 

quarterly and yearly futures contracts were not used in the PCA analysis.  
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Table 1. Eigenvalues and cumulative variance explained 

 Eigenvalue kλ  Cumulative variance explained 
PC 1 4.3e-3 86 % 
PC 2 4.3e-4 95 % 
PC 3 1.8e-4 98 % 
PC 4 8.3e-5 100 % 

 
 
 

 
Figure 7.6: Principal component weights (eigenvectors), k=1,2,3 

 

 

Figure 7.6 plots the shape of the first three principal component loadings as functions of the 

rolling tenor and their shape is seen to be qualitatively similar to the shape of the principal 

components for crude oil. The first principal component is relatively flat, the second has a 

steeper downward slope and becomes negative for a tenor of about 3 months and the third 

has a concave shape with a local minimum at the 3 month rolling tenor. Table 2 lists the 

descriptive statistics of the first three principal components. 
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Table 2. Descriptive statistics of the log-returns of the principal components 

 PC 1 PC 2 PC 3 
Observations 970 970 970 
Mean 6.6e-19 4.7e-19 -2.18e-19 
Median -3.4e-4 -7.74e-4 -9.77e-5 
Minimum -0.25 -0.07 -0.08 
Maximum 0.42 0.11 0.07 
Volatility 
(annualized) 

106 % 33 % 22 % 

Skewness 0.36 0.48 -0.12 
Kurtosis 6.61 5.28 6.87 
Jarque-Bera (p-
value) 

548 (<1e-3) 247 (<1e-3) 609 (<1e-3) 

Jarque-Bera test Rejected Rejected Rejected 
 

 

 
Figure 7.7: Distributions of the 3 PCs compared to the normal distribution. Linear 

scale (top) and log scale (bottom) 
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Figure 7.7 plots the probability distribution of the first three factors in linear and log-scale. 

As for the original futures prices they are also seen to be leptokurtic. 

 

 

 

 
Figure 7.8. Autocorrelation of PC 1,2,3. 95% confidence intervals in dashed line 

 



 91

Figure 7.8. plots the autocorrelation functions of the first three factors. A significant 

autocorrelation is detected at the first lag of the first factor, and perhaps at the 10-20 day 

lag for the second factor. The possible significance of this autocorrelation will be 

investigated in a future study with the estimation of an auto-regressive model for the 

futures log-returns. 

 

The rolling 100 day volatility of the first three factors, annualized, is presented in Figure 

7.9 and compared with the volatility over the entire period. All three volatilities are seen to 

be stable indicating that the initial assumption that they are constant in the models 

presented in Section 6 is reasonable. A more detailed modeling of the volatility, possibly as 

a mean reverting jump diffusion including jumps in the futures returns as in the model 

(2.27), will be the subject of a future study. 
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Figure 7.9: Stability of the volatility of Principal components 1,2,3: Rolling 100-day 

volatility vs. volatility of entire period 
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Figure 7.10: Stability of the PCA weights (U matrix): U1,2,3 calculated over non-

overlapping 1-year periods. Corresponds to PC 1,2,3 in Fig 4 

 

The stability of the principal components loadings is illustrated in Figure 7.10 evaluated 

over non-overlapping 1-year periods. The first principal component loading is more 

variable form year to year than the loadings of the second and third components. The 

stability increases with the index of the principal component, yet overall the stability is 

reduced relative to that observed in the crude oil market illustrated in Figure 3.8. It is noted 

that the loadings plotted in Figure 7.10 have been obtained from rolling futures log-returns 

up to a tenor of 5 months. As the tanker futures market deepens and liquid futures contracts 

with longer rolling tenors become available, as in the crude oil market, the stability of the 

factor loadings may increase. 
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Figure 7.11: Log price of principal components 1,2,3 over the period 

 

The time series of the first three factors are plotted in Figure 7.11 over the entire period of 

the data. As in the crude oil market, the first factor is responsible with up and down  

volatile shocks of the forward curve weighted by the slope of the first principal component 

loading plotted in Figure 7.6 and 7.10. The second factor drifts downwards and appears to 

be mean reverting or seasonal. This factor is again responsible for the rotation of the 

forward curve by virtue of the positive sign of the loading of the second principal 

component for short tenors and its negative sign for longer tenors, as seen from Figures 7.6 

and 7.10. A downwards drift of the second factor tends to push the short tenors of the 

forward curve down relative to the long tenors therefore contributing to the transition of the 

forward curve from backwardation to contango. The third factor seems to be drifting 
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sideways and no further conclusions can be drawn before a more detailed statistical 

analysis. 

 

Correlated Route Futures in Tanker and Dry Bulk Shipping 
 

The Principal Components Analysis presented above for the TD3 forward curve may be 

carried out for other routes and forward curves in the tanker and by bulk shipping markets, 

as in the PCA analysis of Koekebakker and Adland (2004) for the time charter freight rates 

for a Panamax dry bulk carrier. Since certain routes in the wet and dry bulk shipping may 

be highly correlated the two step PCA described in Section 3 for crude oil and heating oil 

extends naturally to the shipping markets. This analysis will enable the development of a 

wide range of hedging and investment strategies in shipping using the methods described in 

the next section. In particular, liquid futures trading for one route may be used to derive 

cross-route hedge ratios for risk management purposes. Moreover, arbitrage opportunities 

may be identified that will enable the design and optimal management of a shipping 

portfolio consisting of chartered cargo vessels and paper derivative positions. 
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8. ASSET VALUATION DYNAMIC HEDGING AND CORPORATE 

RISK MANAGEMENT 
 

The use of futures for valuation, hedging and risk management offers advantages which 

flow from the ease of taking, offsetting and rolling futures positions, the liquidity of futures 

markets and the absence of counterparty risk when futures trade on an exchange. Moreover, 

futures and forward contracts are the fundamental building blocks for the pricing and 

hedging of a wide range of fixed-for-floating and floating-for-floating swaps involving one 

or two energy commodities and options written on swaps. When the use of the spot market 

is necessary, the use of the spot price models implied by the forward curve may be used. 

Participation in the paper futures, forwards and swaps markets may be the only option for 

market participants who are not in possession of the physical assets – the spot commodity, 

storage facilities, hydrocarbon reservoirs and shipping fleets. For firms in possession of 

real assets the present joint modeling framework of the spot and forward markets may be 

implemented for valuation, hedging, and to identify investment and arbitrage opportunities 

involving the physical and paper markets as discussed below. 

 

Hedging of Energy Commodity and Freight Rate Risk 
 

Participants in the energy and shipping markets may be categorized into producers, 

consumers and transformers. The first group includes crude oil, natural gas, coal producers 

and wind power generators. The second group includes commercial and industrial users of 

energy and the transportation industry – trucking, aviation, and shipping. The third group 

includes power generators, oil refiners and natural gas liquefiers. Producers face exposures 

to the price of a primary fuel – crude oil, natural gas, coal or wind. Consumers face 

exposures to the price of refined products – gasoline, jet fuel, diesel or shipping bunker fuel 

– as well as electricity produced from coal, natural gas or wind. Transformers face 

exposures to energy commodity price spreads – coal-natural gas-wind/electricity for power 

plants, crude oil/products for refineries, natural gas/liquefied natural gas (LNG) for energy 

companies, and bunker fuel/freight rates for shipping companies [Geman (2008), Leppard 

(2005), Schofield (2007), Kavussanos and Visvikis (2006)]. 
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Inspired by the vast growth and success of the swap, futures and options markets for the 

risk management of financial securities, the energy commodity industry has witnessed the 

rapid growth of the crude oil OTC and futures paper markets where current volumes are ten 

times those in the underlying physical market. The futures markets have also experienced 

rapid growth for natural gas, crude oil products – gasoline, heating oil and gas oil – and 

more recently electricity. The growth of shipping futures and Forward Freight Agreements 

has also been rapid over the past ten years, yet still a tenth the size of the spot shipping 

charter market. It is an objective of the present article to increase the understanding of the 

pricing and use of freight rate derivatives in order to encourage their more widespread use 

as risk management instruments by the shipping industry. 

 

There exist a number of fundamental differences between financial derivatives and energy 

commodity and shipping freight rate derivatives. Financial derivatives are settled in cash 

and conform more tightly to the no-arbitrage bounds while commodity derivatives often 

require the delivery of the underlying commodity and their no-arbitrage bounds may be 

wide. Therefore the pricing and use of energy commodity derivatives is influenced by the 

structural rigidities of the underlying spot commodity market. It has been argued by Davis 

(2002) that the term structure of crude oil can be divided into two segments, the first 

consisting of futures with tenors 0-18 months and the second consisting of tenors greater 

than 18 months. The first segment is linked to the physical market and is influenced by 

supply and demand, inventories, availability of storage and energy security. The distant 

tenors beyond 18 months are influenced by financial rather than physical economic factors 

including expectations, exchange rates, interest rates and inflation. It is interesting that 

crude oil PCA carried out in Section 3 indicates that the sign of the second principal 

component in Figure 3.4 reverses at a tenor of approximately 18 months and the negative 

peak of the third principal component plotted in the same figure occurs for the same tenor. 

Therefore, as alluded to in Section 3 the shape of the principal components and the 

statistical properties of the first few dominant factors are likely to contain useful 

information on the economic factors governing the evolution of the crude oil forward 

curve. 
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An attribute of commodity derivatives, not present in financial derivatives, is that the 

underlying physical commodity may exist in different grades. The key global marker 

crudes used as pricing benchmarks are; West Texas Intermediate (WTI), Brent, Dubai, 

Tapis and Urals. Liquid exchange traded futures markets exist for WTI and Brent trading 

on NYMEX and ICE, respectively. Therefore using WTI and Brent futures to hedge crude 

oil exposures in other grades, or exposures in products, will give rise to basis risk which 

must be properly managed. Basis risk also arises when an energy commodity producer, 

consumer or transformer is hedging an exposure in a refined product – e.g. aviation jet fuel 

or shipping bunker fuel – using liquid futures of a correlated commodity – e.g. crude oil, 

heating oil or gas oil. In such cases the robust modeling of the correlated forward curves of 

the respective commodities using the two-step PCA developed in the present article is 

essential for the derivation of accurate cross-commodity hedge ratios for the management 

of basis risk. The complexity in the design of intra- and cross-commodity hedging and risk 

management programs is considerable and is highlighted by the collapse of 

Metallgesellschaft discussed in Culp and Miller (1999). 

 

The remainder of this Section discusses in more detail a few examples that highlight the 

use of futures and futures options for the valuation and dynamic hedging of assets and 

derivative portfolios in the energy and shipping markets. Futures, forwards and futures 

options are the fundamental building blocks for the pricing of swaps and swaptions that 

settle against a single price of the spot commodity or an index as well as their average over 

a settlement period. Fixed-for-floating swaps are a strip of forward contracts that settle at a 

set of regular dates, e.g. monthly or quarterly, that span the tenor of the swap. Their 

arbitrage pricing follows the same principles followed for the pricing of the individual 

futures positions. Intra- or cross-commodity floating-for-floating swaps may be priced by 

first pricing two fixed-for-floating swaps followed by the matching of the fixed leg 

payments. A discussion of the types of swaps encountered in the energy markets is 

presented by Leppard (2005). The pricing of interest rate and currency swaps when the 

interest rate term structures are stochastic is presented by Musiela and Rutkowski (2008). 
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Refineries, Power Plants and Transmission Assets 
 

Refineries are energy assets exposed to the price differential of an input and an output 

commodity. The input commodity is crude oil and output commodities include heating oil, 

gasoline, jet fuel and other products. Analogous exposures are faced by power plants where 

the input commodity is coal, fuel, natural gas or wind and the output commodity is 

electricity. 

 

A valuation of such cross commodity energy assets may be carried out by using derivative 

securities as building blocks and in particular options on cross commodity futures spreads 

priced in Section 5. Assume that the refinery will be in operation over the time interval 

(T1,T2) and that the ramp up/down times are negligible. At the current time t < T1,T2 the 

plant owns an option expiring at time τ which grants it the right to operate the facility over 

the time interval (τ, τ+dτ) if the price of the output commodity A is higher than the sum of 

the price of the input commodity B – after an adjustment for a heat rate H – and a fixed 

operating cost Kdτ. The differential value dv(t,τ) at time t of the right to operate the plant 

over the time interval (τ, τ+dτ) is equal to the price of a call option written on the cross 

commodity futures spread expiring at time τ with a strike equal to the operating cost Kdτ,  

 

 

(8.1) 

 

 

Assume that the price of the call option in (8.1) has been obtained using the methods 

described in Section 5. Integrating over the time interval (T1,T2), the cumulative value 

derived from the operation of the refinery follows in the form 

 

(8.2) 
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While the call option on the futures spread under the integral in (8.2) may not trade in the 

market, its explicit form reveals the dependence of the value V(t) on the underlying futures 

of commodities A and B with correlated dynamics. This permits the development of 

strategies to hedge the value V(t) discussed below. 

 

The value V(t) is a stochastic process and its evolution dynamics may be derived from (8.2) 

and an application of Ito’s theorem. This step reveals the Greeks of V(t), namely its 

sensitivities with respect to the time t prices of the futures of the underlying commodities A 

and B and their factor volatilities. Given the stochastic process followed by the value V(t), 

assuming that the current time is t and that an investment in this asset entails an irreversible 

sunk cost I, the value of an investment opportunity in this asset may be determined by 

implementing the real options framework [Myers and Majd (1984), McDonald and Siegel 

(1986), Dixit and Pindyck (1994)]. The value U(t) of the investment opportunity at time t is 

given by the expression 

 

(8.3) 

 

In a risk neutral setting, the interest rate r is assumed constant and time τ is the time when 

the investment will be made which is unknown at time t. The determination of the real 

option value U(t) may be carried out explicitly when the underlying value follows a 

geometric Brownian motion or a mean reverting process with constant coefficients. 

Alternatively, the method of stopping times for martingales may be used. Assume that V>I 

is the value of the underlying asset for which it is optimal to exercise the real option (8.3). 

The value of the investment opportunity may be expressed in the equivalent form 

 

(8.4)  

 

In (8.4) the exercise value V appears as an intermediate variable with respect to which the 

right-hand side is to be maximized. The risk neutral expectation is taken with respect to the 

random stopping time s defined as the time at which the stochastic value process V(t) 
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crosses the barrier V. This expectation is possible to evaluate explicitly for a number of 

stochastic processes for V(t).  

 

The same analysis applies when commodities A and B correspond to the same spot at two 

distinct and distant geographical locations where futures trade. Expressions (8.2)-(8.4) 

provide the value of the transmission asset carrying the commodity, a pipeline, an 

electricity transmission line or a tanker fleet used for the transportation of crude oil and 

products between two specific geographical locations. 

 

Physical and Synthetic Storage  
 

The valuation of physical storage facilities for crude oil, gasoline, heating oil and other 

energy commodities entails the dynamic optimization of injections and withdrawals of the 

energy commodity to/from the facility over a given time period. This dynamic 

injection/withdrawal process depends upon the shape and the volatility of the futures curve 

of the commodity of interest and is discussed below. As in other valuation problems 

discussed in the present section, the commodity futures and their options may be used as 

the fundamental securities for pricing and hedging. When liquid derivatives markets exist 

as in the crude oil and products markets, storage may be implemented synthetically by 

taking the appropriate positions in the futures markets. 

 

Assume that at the current time t a firm has committed to deliver k units of a commodity 

currently in its possession at time T. Assume that liquid futures F(t,s), t<s<T and futures 

options trade for the commodity with evolution dynamics given by a multi-factor 

lognormal process. This commitment can be fully hedged by taking a short position in k 

futures contracts that expire at the horizon T, locking the delivery price F(t,T).  

 

In a more general setting assume that at time t positions are taken in N liquid futures and 

futures options contracts with tenors Ti < T, i=1,…,N and weights to be determined in an 

optimal manner. The value of the resulting futures and futures options portfolio becomes 
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(8.5) 

 

 

 

The ( )iV t positions in the underlying futures contracts and ( )iZ t  positions in futures calls 

and puts are assumed to have common expirations Ti. Ignoring for now the positions in the 

futures options, the futures portfolio may be selected at time t so as to meet obligations for 

the receipt/delivery of ( )iV t  units of the commodity into the storage facility at times Ti, by 

taking long/short positions in the respective futures contracts. If the futures contracts are 

allowed to expire, expression (8.5) provides the present value of the payments to be made 

at time Ti for the receipt of ( )iV t units of the commodity. 

 

The static value V(t) of this futures portfolio at time t may be maximized depending on the 

current shape of the forward curve over the tenor range (t,T). Such a static optimization is 

for example possible when the forward curve displays seasonality, as in the heating oil and 

natural gas markets. In this case the time t value V(t) provides the value of a  storage 

facility used for the injection/withdrawals of ( )iV t units of natural gas at times Ti, subject to 

physical constraints discussed in Eydeland and Wolyniec (2003). 

 

The evolution dynamics of the futures contracts is given by the M factor model (2.1). 

Under the objective measure, a time dependent drift term ( )i tμ is added to the evolution of 

for the futures contract with expiration Ti. Assuming a zero interest rate for simplicity, the 

evolution dynamics of the futures portion of the portfolio (8.5) follows in the form 
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(8.6) 

 

 

 

 

 

The evolution dynamics of the futures portfolio (8.6) is driven by the same M factors as the 

futures curve with time dependent deterministic drifts and volatilities fj(t) given by (8.6). It 

is also seen from (8.6) that the volatilities depend on the selection of the weights Vi(t) in 

the futures portfolio. The same does not apply to the drift which must be estimated under 

the objective measure using the time series of the factors driving the commodity forward 

curve and econometric methods. 

 

The dynamic trading of the combined portfolio (8.6) of futures and futures options 

positions may increase the value of synthetic storage discussed above. By adjusting the 

weights Vi(t) and Zi(t) dynamically over the time period (t,T) the value V(T) may be 

maximized. In order to determine these optimal dynamic trading strategies, the evolution 

dynamics of the futures call and put prices must be derived. They follow from (8.5) and an 

application Ito’s lemma 

 

 

 

(8.7) 

 

 

 

For the purpose of developing dynamic hedging strategies of futures and futures options 

portfolios the stochastic differential equation (8.7) is cast in lognormal form 
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(8.8) 

 

 

 

An analogous expression follows for puts from put call parity. In (8.8) the time dependent 

drift and volatility of the call option are known at time t in terms of the known values of the 

futures contracts F(t,Ti).  

 

Substituting (8.8) in the evolution dynamics of the combined portfolio of futures and 

futures options positions (8.6), we obtain the following stochastic differential equation 

 

 

 

(8.9) 

 

 

 

The time dependent coefficients in (8.9) are all available in explicit form from the closed 

form expressions of the options prices derived in Section 5.  

 

An attractive property of the present multi-factor model of commodity futures is that the 

portfolio (8.5) is driven by as many sources of uncertainty as the number of dominant 

factors M<N which may be very small. This reduces the use of (8.9) for the valuation of 

synthetic storage and other applications into a simple computational task which may be 

carried out efficiently. Moreover, the existence of a small set of factors driving the forward 

curve indicates that the N futures and futures options positions are spanned by the M 

factors, therefore M ~ N. This suggests that the number of liquid futures and futures 

options positions needed for valuation and hedging may be equal to 2-3. The optimal 
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dynamic selection of the weights of the futures and futures options positions may be carried 

out using methods developed for the dynamic management of portfolios of securities. 

These methods rely on the use of stochastic dynamic programming methods which often 

lead to explicit expressions for the portfolio weights under a mean variance objectives, as 

discussed below. 

 

Hydrocarbon Reservoirs 
 

The valuation of oil and gas reservoirs may be carried out along similar lines to the 

valuation of synthetic storage, coupled with the real options framework. A typical 

investment opportunity by an oil company, discussed in Schwartz and Smith (2000), 

involves the development of an oil reservoir over the short or long term that would lead to 

the production of f(s) barrels of oil over the time interval (s,s+dt) with the reservoir 

productivity declining at an assumed exponential rate δ over a time period (τ,T). 

Investment in this reservoir entails an irreversible cost I which may occur over a short 

period or a longer time frame. 

 

Assume that the current time is t and the cash flows resulting from the oil outflows from 

the reservoir will occur over the future time period (τ,T). Assuming that costs associated 

with the oil extraction process are small, the present value of this cash flow stream is given 

by the expression 

 

 

(8.10) 

 

In (8.10) B(t,s) the zero coupon bond assuming deterministic interest rates and the futures 

contracts F(t,s) are assumed to be quoted liquidly on public exchanges or OTC over the 

time period (τ,T).  

 

The oil flow rate f(s) in (8.10) may be possible to select optimally in order to maximize the 

value VF(t), given the current and anticipated shape of the oil futures curve. The value 
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(8.10) may be increased further by the dynamic trading of futures options, assuming they 

are sufficiently liquid. This may be possible under the objective measure when a view 

exists on the evolution of the forward curve and its implied volatility.  

 

The value of an investment opportunity in the hydrocarbon reservoir that entails a sunk cost 

of I, may be estimated by evaluating the real option value (8.3) or (8.4) with VF(t) given by 

(8.10). The optimal exercise of the American option imbedded in (8.3) or the evaluation of 

the expectation involving the stopped martingale in (8.4) may be carried out analytically 

when the evolution of VF(t) is approximated by a tractable stochastic process.  

 

Seaborne Liquid Energy Cargoes 
 

The valuation of seaborne liquid energy cargoes, e.g. crude oil, products, LNG, loaded in 

tankers or other commodities transported in bulk carriers share similarities to the valuation 

of storage discussed above. Assume that futures/forward markets exist for the commodity 

being transported at the port of loading and its destination. Transportation contracts for 

seaborne commodity cargoes may be valued as functions of futures spreads and futures 

options which may be traded dynamically over the duration of a voyage of optimal duration 

and destination.   

 

Tankers engaged in the transportation of liquid energy cargoes may be viewed as crude oil 

transmission assets over particular sea-lanes or more generally as flexible storage facilities. 

Unlike land based storage, crude oil and products in tanker fleets contain surplus value 

associated with the optionality of the optimal time of delivery of the cargo. For certain term 

structures of the crude oil & products futures curves and their implied volatilities it may be 

advantageous to employ tankers as floating storage over a period of optimal duration 

controlled by the speed of a fleet which is instructed to low-steam or stay idle. An example 

is the profitable use of tankers as floating storage when the prompt crude oil forward curve 

is trading in extreme contango. This optionality combined with the dynamic trading of 

futures and futures options as in the case of synthetic storage discussed above leads to the 

maximization of the value of the cargo being transported. Such strategies may be derived in 
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explicit form using the present Gaussian multi-factor cross-commodity model coupled 

stochastic dynamic programming methods discussed below 

 

Dynamic Hedging and Optimal Portfolio Management 

 
The use of liquid futures and futures options contracts to hedge energy assets requires the 

determination of the appropriate hedge ratios. This involves the evaluation of the sensitivity 

of the value of the energy asset on the risk factors that drive the forward curves of the 

pertinent commodity – the hedge ratio. The derivation of the hedge ratio entails the 

estimation of the differential of the asset value using the stochastic differential equation 

(2.1) governing the evolution of the futures price, the prices of calls and puts derived in 

Section 5, if present in the definition of the asset value, and Ito’s lemma. An example of 

this process is offered above in connection with the valuation of storage. The hedge ratios 

are then obtained explicitly as the coefficients that multiply the sensitivities of the value of 

the asset to be hedged to the Brownian increments corresponding to each factor in (2.1). 

The number of factors is determined by the PCA of the commodity market under study and 

as seen from the results of Section 3 need not be more than 2-3. So typically a small 

number of hedge ratios is necessary in practice per commodity forward curve. 

 

The evaluation of the hedge ratios under the current cross-commodity forward curve 

modeling framework enables the development of a wide range of dynamic hedging and risk 

management strategies involving physical or paper energy assets associated with one or 

multiple correlated commodities. When cross-commodity hedging is necessary, the same 

approach applies to the estimation of the hedge ratios. In such cases the two step PCA 

developed in Sections 2 and 3 must be used with the hedge ratios found to depend on the 

factor volatilities of each commodity as well as the cross-commodity factor correlations. 

Cross-commodity hedging may be necessary when the futures markets of the spot 

commodity to be hedged – e.g. aviation jet fuel – may not exist or be liquid enough. In such 

cases hedging may be implemented by using futures of correlated energy commodities with 

liquid energy markets – crude oil, gasoline, heating oil. The design of such cross-

commodity hedging strategies may be carried out by using the two step PCA developed in 
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Sections 2 and 3. Emphasis must be placed on robust and parsimonious models that are 

market to market aiming to minimize basis risk. 

 

The Gaussian evolution dynamics of the commodity and shipping futures derived above 

lead to stochastic differential equations with time dependent deterministic factor 

volatilities. Such evolution dynamics allows the derivation of explicit valuation and 

dynamic hedging strategies under quadratic mean-variance objectives outlined below. 

Consider the cash security 0 ( )S t , assume that the short interest rate r(t) is deterministic and 

time dependent and consider N risky securities, ( ), 1,...,iS t i N= , futures and assets that 

follow the multi-factor lognormal evolution dynamics of the form 

 

 

(8.11) 

 

 

 

The evolution dynamics (8.11) is written under the objective measure and the drifts are 

assumed to be deterministic. The factor volatilities ( )ij tσ are assumed to be time dependent 

deterministic quantities and are estimated using the methods described above. As 

deterministic quantities their values are assumed known at the current and future times t.  

 

A portfolio consisting of the cash security and the N assets and securities governed by 

(8.11) has a value at time t given by the expression 

 

(8.12) 

 

The portfolio weights wi(t) may take positive and negative values corresponding to long 

and short positions and are to be determined dynamically and in a continuous time setting 

subject to a mean variance objective to be met at a horizon T>t. The dynamic evolution of 

the self-financing portfolio is given by the relation 
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(8.13) 

 

A standard and general objective is to maximize the expectation of V(T) while penalizing 

its variance at the horizon T. This mean-variance objective may be cast in the form 

 

(8.14) 

 

The parameter μ>0 may be selected according to the application. This mean-variance 

dynamic portfolio optimization problem has been studied extensively in the securities 

markets since Merton (1971). In the present setup the coefficients of the stochastic 

differential equation (8.11) governing the securities prices are deterministic and time 

dependent.  

 

The solution of the dynamic portfolio optimization problem defined by (8.11)-(8.14) may 

be obtained in closed form by solving the associated Hamilton-Jacobi-Bellman equations as 

described in Yong and Zhou (1999). The portfolio weights wi(t) over the time interval (t,T) 

follow explicitly in feedback form leading to closed form expressions for the expectation 

and variance of the portfolio value V(T) at the horizon. Extensions are also possible when 

the drifts and factor volatilities are stochastic processes. This case arises when the portfolio 

of securities (8.11) includes options. As can be seen from the stochastic differential 

equation (8.8) governing the evolution of the prices of calls and puts, the respective drifts 

and volatilities are functions of the futures prices which are stochastic processes. Therefore 

their future values are not known deterministically as is the case with the factor volatilities 

( )ij tσ . 

 

A number of the applications discussed above may be cast in the mean-variance 

optimization form described by (8.11)-(8.14). Essential in this process is the robust 

estimation of the factor volatilities which is possible in the commodities futures markets 

using the PCA described above. The estimation of the drifts is more challenging in 

principle. Yet, when a PCA model is available of a commodities futures curve, the drift of 
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futures contracts of varying tenors may be decomposed into two components; the first is 

associated with a stable initial slope of the forward curve that may trade in contango, 

backwardation or in a composite formation; the second is associated with the slow 

transition of the forward curve form one formation to another associated with the drifts of 

the factors as discussed in Section 3. 

 

Shipping Charter Portfolios 
 

The valuation methods discussed above for energy assets may be applied to the optimal 

chartering of a fleet of cargo vessels by a shipping company. The risk management of a 

portfolio of real and paper shipping assets may be carried out in order to maximize  value 

subject to financial constraints, for example the minimization of the volatility of the firm 

cash flows.  

 

Assume that at time t vj(t) long/short positions are taken in shipping futures or FFAs for 

route j with tenors Tj and ( )iz t positions in shipping freight rate futures options which have 

been priced in Section 6. By virtue of the arbitrage pricing of quarterly and yearly freight 

futures given by (6.4)-(6.5) and the pricing of freight rate options given by (6.17)-(6.21) the 

shipping derivatives portfolio would consist of monthly contracts with M tenors Tj 

spanning a time interval of interest.  

 

Assuming zero interest rates for simplicity, the time t static value of this shipping futures 

and futures options portfolio is given by the relation 

 

(8.15) 

 

At time t the static value of the portfolio (8.13) may be determined by selecting the 

magnitude and sign of the weights vj(t) and ( )iz t in order to meet specific risk management 

objectives. For example if the firm is ready to commit M cargo vessels to M routes with 

charters initiating at times Tj the charter contract portfolio may be hedged by taking short 

positions in the corresponding shipping futures or FFAs at time t.  



 111

Dynamic Hedging of Shipping Assets 
 

In a more general setting, futures positions in the shipping market may be taken by 

investors who do not own vessels and who have a view on the evolution of the freight rates 

over particular correlated routes. The futures options positions may enhance the value 

leading to the dynamic trading of a shipping derivatives portfolio analogous to that 

discussed earlier in connection with the valuation of storage. An investment that includes 

exposures in the real assets, the cargo vessels, or just the derivatives markets may therefore 

be designed to meet specific investment objectives or identify arbitrage opportunities. The 

hedging of shipping assets proceeds along the same lines as for energy assets discussed 

above. The freight rate futures follow log-normal diffusions and the Asian freight rate 

futures are priced by Black’s formula. Therefore, hedge ratios may be derived explicitly. 

The same applies to the hedging of shipping assets associated with correlated shipping 

routes. The respective forward curves follow log-normal diffusions with factor volatilities 

estimated from individual PCAs for each route and the factor correlations follow from a 

two step PCA as in the crude oil and products markets. This enables the development and 

implementation of a wide range of dynamic hedging and risk management strategies in the 

tanker and dry bulk shipping sectors using (8.11)-(8.14) with the shipping portfolio (8.15).  

 

Ship Routing and Fuel Efficient Navigation  

 
The cost of bunker fuel represents a major expense in the shipping industry which currently 

consumes about 5% of the world oil production or about 4 million barrels of oil a day. The 

primary weather uncertainty faced by a cargo vessel is the severity of seastates to be 

encountered during a voyage which typically has a duration of weeks.  The severity of the 

seastate along with the ship speed and heading determine the vessel fuel consumption 

which may be estimated using standard methods in naval architecture and marine 

hydrodynamics. A safe and optimal selection of the ship speed and course may lead to a 

significant reduction in fuel consumption. Generating 1 KW of propulsion power for one 

hour requires about 170g of fuel. A containership with a 60 MW main engine therefore 
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burns about 245 tons of fuel daily or 3,430 tons during a 2 week trip across the Pacific. For 

a price of $400/ton this represents a fuel cost of $1,372,000 per crossing. Fuel savings 

during a typical trip were estimated by Avgouleas (2009) to be 10% or more when the 

vessel course and speed are optimally adjusted when sailing in a seastate, leading to 

$137,200 of savings per trip for a containership. 

 

The ship routing and fuel efficient ship navigation may be treated by invoking the log-

normal diffusion models and optimal portfolio management methods presented above for 

the crude oil and shipping futures markets. The two state variables that govern the severity 

of a seastate are the significant wave height H and modal wave period T. The values of (H, 

T) may be assumed constant over the time scale of a stationary seastate which is assumed 

to be of the order of a few hours. Yet, they must be allowed to vary stochastically over a 

time scale of the order of a day to a week. The following joint-lognormal evolution process 

is assumed for the stochastic evolution of (H,T) pair over the long time scale 

 

 

(8.16) 

 

 

 

The stochastic dynamics (8.16) ensures that (H,T) remain positive at all times and that their 

drifts, volatilities and correlation as observed onboard the vessel are time dependent over 

the duration of the voyage. The coefficients of the joint log-normal evolution of (H,T) are 

subject to restrictions imposed by the physics of ocean waves, and are otherwise estimated 

from weather forecasts provided by a weather routing service over all likely trajectories of 

the vessel during the voyage. Assuming that a weather forecast is made available at the 

current time t for the rest of the voyage, the solution of the stochastic differential equation 

(8.16) up to a future time τ such that t<τ<T leads to the following expression for the 

random variables (H (τ),T(τ))   
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(8.17) 

 

 

Let G the rate of consumption of bunker fuel in kg/sec for the propulsion of a cargo vessel. 

In calm weather, the value of G depends on the resistance and propulsion characteristics of 

the vessel, namely her hull shape, propeller design, engine characteristics, life of the vessel 

etc. In a seastate G also depends on the vessel added resistance in waves which in turn 

depends on the vessel seakeeping properties. All hydrodynamic quantities are assumed to 

have been computed a priori in the form of mean and RMS values in a seastate with known 

(H,T) values and stored in tabular form for use in the solution of the optimal control 

problem discussed below. 

 

The fuel consumption in calm weather and in waves also depends on two “controls”, u1 the 

propeller revolutions per minute (RPM) and u2 the vessel heading relative to an ambient 

seastate, current and wind. The two controls may be set in real time by the captain or the 

vessel navigation system. The effects of current and wind are ignored in the present 

treatment, yet they may be easily accounted for and treated along similar lines. When the 

vessel sails into a seastate the fuel consumption depends on the state variables (H, T) 

characterizing the seastate at time t. We may therefore cast the dependence of G on the 

weather state variables and controls as follows 

 

(8.18) 

 

Assume that t is the current time, T-t is the duration of the remainder of the voyage and 

treat T as a stochastic variable that depends on the speed and course of the ship which are 

not known with certainty at time t. The objective of a fuel efficient navigation policy is to 

minimize 

 

(8.19) 
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This nonlinear stochastic optimal control problem is in principle difficult to solve. It can be 

simplified considerably by linearizing the fuel consumption rate G about the known fuel 

consumption if the vessel were to sail in calm weather during the entire trip. Assuming that 

the vessel speed and course deviations about their known calm weather values are not too 

large, a reasonable assumption, the optimal control problem (8.19) can be linearized by 

using Ito’s theorem and cast into a form that may treated explicitly using (8.11)-(8.14). 

Closed form expressions follow for the optimal controls 1 2( ), ( );u u t Tτ τ τ< < over the 

duration of the voyage that lead to the minimum possible fuel consumption over the trip, 

subject to constraints that ensure the vessel safety. The explicit form of these algorithms 

allows their easy and efficient implementation in real time onboard a vessel.  

 

The optimal routing of cargo vessels and shipping fleets may be treated in a more general 

context by estimating the dependence of the net revenue of a vessel on a set of economic 

state variables, or factors, Fi, i=1,…,M, that follow the joint-lognormal evolution dynamics 

(2.1). In this setting a shipowner would be interested to determine the optimal vessel speed 

and course in order to maximize the net revenue R over a single trip or a number of 

consecutive trips. For example an optimal reduction of the speed of a shipping fleet would 

lead to the reduction of the supply of ton-miles and for fixed demand would lead to an 

increase of the freight rate revenue and a reduction in fuel consumption. In this setting the 

optimal control problem to be solved becomes 

 

(8.20) 

 

The solution of the optimal control problem (8.20) may be carried out explicitly assuming 

that the dependence of the net revenue on the economic factors is linear, upon linearization 

of the fuel consumption cost about the calm weather values and use of (8.11)-(8.14).  
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  Derivatives in Corporate Finance 
 

Concluding this section the role of derivatives on the capital structure, financial 

management and investment policies of firms in the energy and shipping industries is 

addressed.  The topic of risk management within the field of corporate finance and the use 

of derivatives for hedging are discussed by Brealy and Myers (2000) and Stutz (2003). 

Accounting issues, taxation, the Modigliani-Miller invariance framework, firm valuation, 

financial distress costs, monitoring, agency costs and the use of derivatives are addressed. 

The present discussion focuses upon the role of risk management, derivative pricing and 

asset valuation and hedging by non-diversified firms in the energy and shipping industries 

with concentrated exposures to volatile energy prices, freight rates, bunker fuel costs and 

interest rate risks.   

 

A first step towards the modeling and management of commodity market risk is the 

identification of a small set of factors that affect the forward curves and spot prices of 

crude oil, natural gas, shipping freight rates and other commodities. As discussed above the 

existence of liquid derivative markets enables the development of such factor models. 

Similar factor models have been widely used for the modeling of default free term structure 

of interest rates. As the derivative markets in the energy and shipping industry grow and 

deepen, price transmission mechanisms between the spot and futures develop and a 

dominant set of factors affecting each sector becomes easier to identify from the PCA of 

the forward curve. 

 

Energy and shipping are capital intensive industries that rely on debt capital to finance their 

assets and operations. Consequently, these sectors are exposed to interest rate and credit 

risk. The modeling of the default free term structure of interest rates has been studied 

extensively and a number of robust models are widely used in practice. They include the 

Hull-White-Vasicek, the Cox-Ingersoll-Ross and the Black-Karasinski short rate models. 

These methods have been shown to be consistent with the Heath-Jarrow-Morton HJM 

model of the forward term structure of interest rates. Their properties and calibration to the 
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market prices of traded interest rate securities and their derivatives is discussed by Shreve 

(2003). They may be used to model the default free interest rate risks energy and shipping 

firms are exposed to. 

 

Credit risk may be valued by using the structural method of Merton (1974) or the reduced 

form intensity method of Duffie and Singleton (2003) and Lando (2004).  The structural 

method of Merton’s treats the firm equity and debt as claims contingent upon the value of 

the firm assets which may not be observable, and uses Black-Scholes for their pricing in a 

risk neutral setting. The reduced form method extends the HJM framework by introducing 

a hazard rate which enters as a yield premium added to the risk free rate. The hazard rate 

and the probability of survival of a firm may then be modeled as jump-diffusions and 

calibrated against the market prices of equity, debt and credit default swaps. The value of 

the firm assets in Merton’s method is often not observed, an exception being the shipping 

industry where the cargo vessels trade in the second hand market. As pointed out by 

Schonbucher (2005), this unique property of firms with observable prices for their assets in 

a second-hand market enables the implementation of the Merton model for the pricing of 

equity and debt claims.  

 

Energy and shipping firms often have publicly traded equity which may be used for the 

calibration of both structural and reduced form methods and the pricing of credit risk. This 

approach is adopted by Overhaus et. al. (2007) where the firm equity price, firm survival 

probability and the risk free short rate are modeled as jump-diffusion processes. Negative 

jumps in equity returns are correlated with negative jumps in the survival probability – 

positive jumps in the hazard rate – hence linking the equity price process with credit 

events. In the case of shipping this reduced form modeling framework may be coupled with 

a model for the prices of the cargo vessels in the second-hand market leading to a hybrid 

credit risk model that combines attributes of the structural and reduced form methods 

[Amman (2001). The factors affecting the yield premia of seasoned high yield bonds in 

shipping have been studied by Grammenos, Alizadeh and Papapostolou (2007). The data 

underlying this model form the basis for the calibration of a hazard rate process and the 

development of a reduced form model for the pricing of shipping credit risk. This reduced 
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form model would permit the modeling both of interest rate and credit risk under the HJM 

framework and would enable the integrated management of interest rate, credit and 

commodity price risk. 

 

Equity prices of tanker and dry bulk shipping firms may be strongly correlated with the 

price of the underlying freight rate index. Factors driving the equity prices of bulk shipping 

firms may therefore be revealed by the respective futures and FFA markets discussed 

above. As the liquidity of the shipping derivative markets grows, the factor volatilities of 

shipping futures and FFAs are likely to become more correlated with the equity volatility 

of shipping firms. This will enable the use of the shipping futures markets for the 

development of dynamic hedging strategies by firms aiming to address a wide range of 

financial management policies. They include the minimization of cash flow variance, 

selection of optimal firm leverage in order to take advantage of the tax shield on debt 

interest, fleet expansion via the proper mix of debt and equity, determination of dividend 

policies, structuring of equity hybrid derivatives and the enhancement of firm value.   
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9. CONCLUSIONS 
 

The modeling, pricing, valuation and hedging has been presented of derivatives and assets 

in the crude oil and tanker shipping markets based on a Gaussian HJM multi-factor model 

of their forward curves based on a Principal Components Analysis (PCA). The approach 

draws upon the growing depth and liquidity of the commodity futures as the fundamental 

underlying securities used for price discovery and risk management in correlated energy 

commodity sectors like crude oil and its products as wet and dry bulk shipping sectors.  

 

A number of exposures in the energy and dry bulk shipping sectors involve cross-

commodity transactions. The modeling was carried out of correlated commodity forward 

curves using a two-step PCA. A cross-commodity HJM model was developed for 

correlated commodity futures curves which reveals a small number of 2-3 factors affecting 

each commodity market. An arbitrage free relation between the forward and spot markets 

was established and a multi-factor process for the spot price of the underlying commodity 

was derived revealing the mean reverting dynamics of short term transitory and long term 

persistent shocks, as implied by the forward curve. The factor volatility term structure was 

found to be stable for the crude oil, gasoline and heating oil markets. The time series of  the 

dominant factors were derived and shown to govern the evolution of the forward curve, 

including its transition from backwardation to contango or into other composite formations.  

The explicit pricing was also considered of vanilla and spread options written on liquid 

underlying futures contracts that may be used as the fundamental securities for valuation 

and hedging.  

 

Liquid commodity futures contracts and their derivatives are forward looking instruments 

that may be used for the valuation of a number of cross-commodity assets in the energy and 

shipping industries. They include refineries, power plants, oil and natural gas storage, 

energy transmission assets and seaborne liquid energy cargoes. When investments in these 

assets have not yet been made, the use of the real option framework was outlined for the 

valuation of the investment opportunity and the determination of the optimal exercise 
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policy. A number of examples highlighting the use of the present multi-factor framework 

for the valuation and hedging of energy assets were presented. 

 

The modeling framework was extended to the pricing of tanker shipping futures and 

Forward Freight Agreements in an arbitrage free setting. A HJM multi-factor model with 

time dependent volatilities was introduced for the shipping forward curve and was used for 

the modeling of shipping futures and Forward Freight Agreements. As the shipping 

derivatives markets grow in depth and liquidity the present modeling and pricing methods 

stand to foster a better understanding of the factors affecting the shipping markets and lead 

to the development of a wide range of risk management and investment strategies. 
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