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Abstract

In this paper, we investigate the effect of market power on the equilibrium path

of an emission permits market in which firms can bank current permits for use in

later periods. In particular, we study the market equilibrium for a large (potentially

dominant) firm and a competitive fringe with rational expectations. We character-

ize the equilibrium solution for different permits allocations. We find, for example,

that if the large firm enjoys a dominant position in the after-banking market, this

position gets extended to the market during the banking period regardless of the

allocation of the stock (bank) of permits.
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1 Introduction

Emission permits trading usually refers to trades across space in the same period of time,

but it can also refer to trades through time, typically by banking, i.e., the possibility of

carrying over unused permits from one period for use in later periods.1 Over the past

decade, this latter dimension of emission permits trading has drawn increasing attention

in the literature and proposals to decrease emission caps over time suggest a particular

larger role for banking in the future.2 A salient example is the US Acid Rain Program,

where banking has been a major form of emissions trading (Ellerman et al, 2000; Ellerman

and Montero, 2002). During the first five years of the program constituting Phase I, 1995-

99, only 26.4 million of the 38.1 million permits (or allowances) distributed were used

to cover emissions. The remaining 11.65 million allowances (30% of all the allowances

distributed) were banked and has been gradually consumed during Phase II (2000 and

beyond). As a result, the Phase II cap is expected to be reached sometimes between 2008

and 2010.

Several authors have studied the theoretical properties of intertemporal trading (Ru-

bin, 1996; Cronshaw and Kruse, 1996; Schennach, 2000), but there is little work looking

at the effect of market power on the equilibrium path. Because the evolution of a permits

bank is closely related to the evolution of an exhaustible resource stock,3 in this note we

draw upon both the literature on permits markets and the literature on exhaustible re-

sources to discuss whether and how a large (potentially dominant) firm can affect the

market equilibrium path.4

We view each firm as a rational-expectation participant in a noncooperative dynamic

1Borrowing of permits from future vintages could also be included (and may be efficient to do so),
but it has attracted much less attention than banking.

2An effective policy for reducing atmospheric greenhouse gas concentrations would likely include
emission caps that would become more stringent over time.

3There are important differences though. First, the permits market still remains after the permits
bank has been exhausted while the market for a typical exhaustible resource vanish after the total stock
has been consumed. Second, extraction costs for permits are zero while they are generally positive for a
typical exhautible resource. In addition, the demand for permits corresponds to a derived demand from
the same firms that hold the permits while the demand for a typical exhaustible resource comes from a
third party.

4In solving for the equilibrium we restrict attention to spot transactions in the permits market. The
introduction of forward markets brings new elements to the model beyond the scope of this paper. See
Liski and Montero (2004) for a discussion.
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game. We characterize the market equilibrium path for different permits allocations, so

we consider the possibility of market power both during and after the banking period.

As in some exhaustible resource models, we identify time-consistency problems for some

permits allocations in the sense that what is optimal for the large firm at time zero is no

longer optimal at some future time. Without adopting a particular game structure, e.g.,

the Cournot structure of Salant (1976) or the Stackelberg structure of Newbery (1981),

we provide a characterization of the (time-consistent) equilibrium path for allocations in

which time inconsistency becomes an issue. In that respect, we find, for example, that if

the large firm is able to exercise market power in the after-banking market, as described

by Hahn (1985), this dominant position extends to the market during the banking period

regardless of the permits allocation during the banking period.

The rest of the paper is organized as follows. In Section 2, we present the model and

derive the equilibrium path (i.e., price and quantity paths) for a competitive market. In

Section 3, we study the evolution of prices and quantities for a market composed of large

firm and a competitive fringe. Final remarks are in Section 4.

2 The model

Consider an industry with a large number N of heterogenous plants whose emissions are

regulated by a tradeable permits program with banking (a firm may own one or several

plants). The regulator allocates a total of A(t) =
PN

i=1 ai(t) allowances (or permits) in

period t, where ai(t) is plant i’s allocation at t (we will use capital letters for industry or

group-level variables and small letters for plant-level variables). For (aggregate) banking

to actually happen permits allocations must decrease over time (at least at a rate higher

than the discount rate for some period of time). To follow the design of the US Acid Rain

Program, we assume that during the first T0 periods of the program the total number of

permits allocated in each period is AH and that thereafter is AL, with AH À AL.5

Plant i’s unrestricted or counterfactual emissions (i.e., emissions that would have been

5Alternatively one can let (AH − AL)T0 be the initial “stock” allocation and AL the per-period
allocation.
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observed in the absence of the permits program) are denoted by ui and its abatement costs

by ci(qi(t)), where qi(t) are emissions reduced at period t (we assume that both ui and

ci(·) remain unchanged over time). Thus, plant i’s emissions at t are ei(t) = ui− qi(t). A

fully competitive market solves the following infinite horizon intertemporal minimization

problem (Rubin, 1996; Schennach, 2000)

min

Z ∞

0

Ã
NX
i=1

ci(qi(t))

!
e−rtdt (1)

s.t. Ḃ(t) = A(t) +Q(t)− U (2)

B(0) = 0,−B(t) ≤ 0 (3)

where r is the risk-free discount rate, B(t) is the stock (i.e., bank) of allowances at time

t (dots denote time derivatives), Q(t) is aggregate reduction and U > AL is aggregate

counterfactual emissions.

The solution of (1)—(3) can be decomposed as follows. First, there is a static efficiency

condition that must hold at all times (even after the bank of permits is exhausted):

c0i(qi(t)) = c0j(qj(t)) = P (t) for all i 6= j, where P (t) is the equilibrium price of permits

at t. To find the rest of the solution, we use the static efficiency condition to denote

the industry least-cost curve by C(Q(t)). This implies that C 0(Q(t) = P (t). Hence, the

(current-value) Lagrangian for the problem (1)—(3) can be written as

L = C(Q(t)) + λ(A(t) +Q(t)− U)− φB(t)

where λ(t) and φ(t) the multiplier functions.

Necessary conditions for optimality include satisfaction of (2), (3) and6

∂L
∂Q

= C 0(Q(t)) + λ(t) = 0 (4)

λ̇(t)− rλ(t) = −∂L
∂B

= φ(t) (5)

φ(t) ≥ 0, φ(t)B(t) = 0 (6)

6See Kamien and Schwartz (1991).
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In addition, taking the derivative of (4) with respect to time yields

d(C 0(Q(t))
dt

− rC(Q(t)) + φ = 0 (7)

When B(t) > 0, φ(t) = 0 and marginal costs C 0(Q(t)), and hence price P (t), follow the

Hotelling’s rule and rise at the discount rate r (note that permits are “extracted” at zero

cost). Expression (7) is commonly known as the (no) arbitrage condition.

Whether and when firms will bank permits depends upon the allocation of permits,

the evolution of marginal cost functions and the discount rate. For example, a significant

reduction of the permits allocation in the future, as in the SO2 program, will result in a

banking period of some length T > T0 (to be determined shortly): firms bank permits

during some period of time and gradually use them thereafter until the bank expires at

T . After T , permits trading continues (to equate marginal costs across plants) but total

emissions remain constant at AL.

The full compliance condition establishes the total number of permits allocated during

the banking period [0, T ] be equal to the accumulated emissions during such period,

that is (this condition is equivalent to the exhaustion condition found in the depletable

resources literature)

(AH −AL)T0 +ALT =

Z T

0

E(t)dt (8)

At T the terminal condition E(T ) = A(T ) must also hold, which is

Q(T ) = U −AL (9)

Combining (7), (8) and (9) we can solve for T ∗ (the superscript “*” indicates a perfectly

competitive value), which in turn allows us to compute the competitive price and quantity

paths; P ∗(t) and Q∗(t), respectively.

A solution for T ∗ can be obtained if we assume some functional form for C(Q). For

example, if we assume that C 0(Q) is linear, as found by Ellerman and Montero (2002)

for the SO2 program, the abatement path during the banking period is

Q(t) = (U −AL)e−r(T
∗−t) (10)
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Replacing (10) into (8) and rearranging we have the following expression that solves for

T ∗

(AH −AL)T0
U −AL

= T ∗ − 1
r

¡
1− e−rT∗¢ (11)

Let us next discuss the effect on the market equilibrium path when a large number of

plants are owned by a single firm.

3 Banking with market power

Consider now a permits market with banking in which there is a large (potentially dom-

inant) firm and a competitive fringe.7 Firms play a noncooperative dynamic game. For

the purpose of this note we do not need be specific about the structure of the game. One

could, for example, adopt a Cournot structure in which at each period each firm decides

its quantities (permits purchases/sales and abatement level) so as to maximize its own

profits while taking as given the actions of the remaining firms. Regardless of the struc-

ture adopted, the action of any small firm does not affect the price and, consequently,

they are price takers.

Although similar versions of this problem has been already solved for a typical ex-

haustible resource under different set of assumptions (Salant, 1976; Gilbert 1978; New-

bery, 1982), the proposed solutions do not immediately apply to a permits bank for

several reasons. Extraction costs for permits are zero. In addition, costs of storage for

permits are zero so speculators (and firms in the fringe) will make sure that prices neither

jump nor grow at rate higher than r. This also gives the large firm the possibility to buy

(or sell) a stock of permits from the fringe and store them for future use at no cost other

than the opportunity cost of selling them earlier.

While several exhaustible resource models are already equiped with these zero-cost

assumptions, there are more fundamental differences between a stock of permits and a

stock of an exhaustible resource. In a permits market the large producer can still exercise

market power after its stock (i.e., bank) and that of the fringe have been exhausted. So,

7Based on the analysis of Lewis and Schmalensee (1980) for an oligopolistic market, considering two
or more large firms and a competitive fringe should not qualitatively alter the main result of this section.
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contrary to what would occur in a typical exhaustible resource market, it may be possible

that the large firm can still use its strategic position of the end of the banking period

to exercise some market power during the banking period even if it does not receive any

permits from the stock (AH−AL)T0 but only an allocation flow throughout. Furthermore,

because the demand for permits does not come from a third party (e.g., consumers) but

internally from the fringe and the large producer, the large firm’s decision problem is not

only the choice of a permits sale/purchase path (or a price path supported by a sales

path) but also of an abatement (or demand) path.

To study the large firm’s problem, let f index the competitive fringe and m the large

producer that attempts to manipulate the market. Abatement costs are denoted by

Cf(Qf(t)) andCm(Qm(t)), respectively. Total permits allocations are as before. However,

it is useful to make an artificial distinction here between stock and flow allocations: the

depletable stock is the cumulative number of permits allocated above the long-term goal

of AL. The total flow (or per period) allocation is AL beginning in t = 0 and the total

stock allocation is (AH −AL)T0. The fringe receives a fraction θAL of the flow allocation

and µ(AH − AL)T0 of the stock allocation, so the large firm receives (1 − θ)AL and

(1− µ)(AH −AL)T0, respectively.

Depending on the allocations (and cost structures), the large firm can, in principle,

manipulate the market during and after the banking period. As explained by Hahn

(1985), the after-banking manipulation is only profitable if the allocation θ and costs

are such that the large producer is either a net seller or buyer of permits after the bank

has exhausted. In other words, the large firm does not find it profitable to manipulate

the after-banking market if it receives a flow allocation exactly equal to the number of

permits that it would have demanded in a competitive after-banking market. To facilitate

the exposition as to how the equilibrium solution changes with the permits allocation,

we will consider two benchmark cases.

3.1 Large firm with all the stock

Let us first consider the case in which µ = 0 and θ is such that there is no after-banking

manipulation. The latter implies that the after-banking equilibrium price will be as in
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the competitive solution, i.e., P ∗(T ∗). When µ = 0 , the fringe does not build a bank

on its own but buys permits from the large producer from the very the first period. The

large firm, on the other hand, finds it profitable to build and manage a permits bank.

For this particular allocation in which small firms have no stocks, the equilibrium of

the game can be found applying conventional dynamic programming principles. This is

because the binding contract solution is time-consistent (and hence, there is no difference

between Cournot and Stackelberg structures that one could eventually adopt). Then, the

equilibrium is found by solving the large firm’s following optimization problem8

max

Z ∞

0

[P (t)X(t)− Cm(Qm(t))]e−rtdt (12)

s.t. P (t) = C 0
f(Qf(t)) (13)

X(t) = Uf(t)−Qf(t)−Af(t) (14)

Ḃm(t) = Am(t)− Um(t) +Qm(t)−X(t) [λm(t)] (15)

Bm(t) ≥ 0 [φm(t)] (16)

Bm(0) = 0 (17)

where X(t) is the number of permits sold by the large firm in period t,9 Bm(t) is the

large firm’s bank and λm and φm are the multiplier functions associated to the different

constraints.

Since firms in the fringe are price takers, it is irrelevant whether the leader solves for

P (t) orQf(t). Replacing (13) and (14) in the objective function to form the corresponding

(current-value) Lagrangian L, the necessary conditions for optimality include satisfaction

8Note that the solution implicitly takes into account agents’ rational expectations. For example, we
rule out a solution in which there is large price jump; rational firms would buy more today in anticipation
to the price jump.

9If the dominant firm acts as a monopsonist then X(t) < 0.
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of (13)—(17) and

∂L
∂Qf

= [C 00
f (Qf(t))X(t)− C 0

f(Qf(t))] + λm(t) = 0 (18)

∂L
∂Qm

= −C 0
m(Qm(t)) + λm(t) = 0 (19)

λ̇m(t)− rλm(t) = − ∂L
∂Bm

= − φm(t), φm ≥ 0, φmBm = 0 (20)

From (18) and (19) we obtain

[C 0
f(Qf(t))− C 00

f (Qf(t))X(t)− C 0
m(Qm(t))] = 0 (21)

Eq. (21) shows that marginal revenues (MR = C 0
f −C 00

fX)
10 and marginal costs (MC =

C 0
m) are equal in all periods. Combining (19) and (20) shows that the marginal cost must

rise at the rate of interest unless the bank is zero.

The characterization of the price path P (t) during the banking period can be obtained

from (18). Taking the derivative with respect to time, letting λ̇m = rλm, and rearranging

yields

Ṗ (t) = rP (t) + Ċ 00
f (Qf(t))X(t)− rC 00

f (Qf(t))X(t)− C 00
f Q̇f(t) (22)

Although it is not possible to provide a precise characterization of P (t) without a func-

tional form for Cf(·), we can provide a general characterization about how it evolves over
time. Because there are no storage costs, we know that arbitrage prevents prices from

increasing at anything higher than the discount rate r, i.e., Ṗ (t)/P (t) ≤ r. We also know

that since marginal cost C 0
m(Qm(t)) must increase at the rate of interest (otherwise the

large firm could rearrange its reduction pattern and save on compliance costs), we must

also have that marginal revenues C 0
f(Qf(t))−C 00

f (Qf(t))X(t) rise at the rate of interest.

Provided that C 0
f(Qf(t) = P (t) and X(t) = Uf(t)−Qf(t)−Af(t), marginal revenues R0m

can be re-written as

R0m(t) = P (t)

µ
1− 1

�(t)

¶
(23)

10Note that since C 00f (Qf (t)) = ∂P (Qf (t))/∂Qf (t) and large firm’s revenues are P (X(t))X(t), its
marginal revenues can be expressed as P (t)− P 0(X(t))X(t).
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where

�(t) =

µ
dC 0

f(Qf(t))

dQf(t)

X(t)

P (t)

¶−1
= −dX(t)

dP (t)

P (t)

X(t)
(24)

is the fringe demand elasticity (defined positive). Since � increases with price because

C 0
f(0) = 0 and C 0

f(Uf) = P̄ <∞, (23) indicates that in equilibrium prices P (t) increase

at lower rate than R0m(t).
11 Consistent with Salant (1976) and Newbery (1981), when

the fringe has no stock, it is optimal for the large firm to let prices rise at rate strictly

lower than the discount rate, i.e., Ṗ (t)/P (t) < r.12

Both the competitive and monopoly price paths are depicted in Figure 1. The time

at which the large firm’s bank exhausts is denoted by Tm. Because of the exhaustion

condition (8) and Ṗ (t)/P (t) < r, the monopoly path must start above the competitive

price and must cross it from above before exhaustion. Figure 1 also shows, as in the

exhaustible resource literature, that the large firm extends the banking period compared

to what would have been observed under perfect competition. The shape of the quantity

path Q(t) = Qf(t) +Qm(t), which can be derived from the price path, eq. (21) and the

exhaustion condition, is similar to that of the price path.

It is straightforward to extend the above analysis to the case in which θ is such that

the large firm is also able to exercise market power after the bank has been exhausted

(i.e., after T ). If the large firm is a net seller in the after-banking market, the choke

price Pm ≡ P (Tm) will be higher than P ∗(T ∗) but the rate of price increase will be

still lower than the rate of interest. The “choke” price can be readily estimated by

solving (21) subject to (14) and Qm(T
m) = U(Tm) − AL − Qf(T

m). If, on the other

hand, the firm is a net buyer in the after-banking market, Pm < P ∗(T ∗) and, again,

Ṗ (t)/P (t) < r. In summ, when the entire stock is allocated to the large firm, the

problem of time inconsistency does not arise and, hence, the equilibrium solution can be

found with conventional dynamic programming techniques.

11Note that the monopoly and competitive solution would coincide if the fringe’s demand for permits
(which derives directly from the marginal cost curve) were isoelastic (see Stiglitz, 1976). Such demand
structure, however, is not possible here because both the number of permits demanded at P = 0 by
any fringe member is finite (equal to its unrestricted or counterfactual emissions) and the demand for
permits falls to zero above some P̄ .
12Note that if marginal cost curves are linear, Q̇f (t)/Qf (t) = Ṗ (t)/P (t). Replacing this into (22)

leads to Ṗ (t)/P (t) = r/2.
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3.2 Large firm with no stock

Let us now consider the opposite case in which the fringe holds all the stock, i.e., µ = 1,

and θ is such that the large producer is a seller of permits at the end of the banking

period.13 Since the large firm receives no stock, one might argue that in equilibrium

the large firm builds no bank and the fringe’s bank expires at the choke price Pm. This

equilibrium candidate would exhibit competitive pricing during the banking period in

the sense that prices would grow at the rate of interest all the way up to the choke price

Pm.

If the large firm could sign binding contracts (or alternatively, actions were restricted

to a one-time move at the beginning of the game), we show in the Appendix that the

above candidate is indeed the equilibrium of the game. Part of the explanation of why

competitive pricing during the banking period is atractive for the large firm is because it

speeds up the exhaustion of the stock of permits moving forward its after-banking profits

(i.e., profits after Tm). It is useful for later discussion to notice that this equilibrium

has the large firm as a net buyer during the first part of the banking period and as a

net seller during the latter part. Then, there is a time t0 before the end of the banking

period where the large firm does not trade permits but just covers its emissions with its

own allocation.14

In the absence of binding contracts (i.e., where players make their decisions period

after period), however, competitive pricing during the banking period is not time consis-

tent. Hence, it cannot be part of the equilibrium of a game in which small firms have

rational expectations, and therefore, correctly anticipate the deviation incentives that

the large firm will face in the future. This time consistency problem arises because the

large firm becomes a net permits seller before the end of the banking period.

More precisely, if the players were to follow competitive pricing during the banking

period there will be a time t00 > t0 at which the fringe stock is so small that the fringe

13Same qualitative results apply if the dominant firm is a monopsonist at the end of the banking
period (the end or “choke” price will be lower than the competitive price).
14The latter does not need be the case if we allow for a one-time transaction at the beginning of the

game. But this would only exacerbate the time inconsistency problems that we identify below because
the large agent will find itself with a large stock of permits right after the one-time transaction.

11



demand would absorb this stock in a period if the large agent unexpectedly revised its

sales path and refused to supply.15 The large agent could then bank the supply it was

supposed to bring to the market that period and reoptimize its sales path so as to follow

a monopoly path such as the one described in the previous section (i.e., there will be

a price jump followed by prices growing at rate lower than r). Given that at t00 (and

thereafter) the large agent is a net seller irrespective of whether it follows competitive

pricing or monopoly pricing, it should be clear that it does not have incentives to stick

to competitive pricing all the way to the end of the banking period. Consequently, the

(time-consistent) equilibrium path must necessarily have the large firm conserving enough

permits to keep a stock that it will consume and sell after all firms in the fringe have

exhausted theirs, regardless whether it received some of the stock (AH −AL)T0 or not.

Without introducing more structure to the game, this characterization of the equilib-

rium solution gives us enough information to qualitatively depict equilibrium price and

quantity paths, P (t) and Q(t), respectively. As in Salant (1976) and Newbery (1981),

there will be three distinctive phases. As shown in Figures 2 and 3, during phase A, price

P (t) rises at the interest rate r and quantities Qf(t) and Qm(t) rise accordingly. During

this phase, which is commonly denoted as the competitive phase, the fringe is a net seller

and, hence, the large firm is a net buyer of permits.16 During the competitive phase the

fringe consumes its stock and the large firms builds its own, so at T f the fringe’s bank is

exhausted but the large firm’s bank is positive.

In phase B, which is commonly denoted as the monopoly phase, P (t) rises at a rate

strictly lower than r and Q(t) = Qf(t) + Qm(t) also grows at a rate strictly lower than

under the competitive case since Qf(t) follows the price path. Furthermore, from the full

compliance (or exhaustion) condition, the observed path Q(t) crosses the competitive

path Q∗(t) sometime during this phase. At Tm, the leader’s bank is exhausted; after

which prices remain constant at Pm > P ∗. Finally, at Tm players reach phase C, i.e., the

long-run equilibrium phase.

15Note that this cannot happen right at t0 because the price jump that will follow the supply shortage
will lead the fringe to abate more and, hence, consume fewer permits.
16Note that for the fringe to be indifferent between selling permits today and tommorrow prices must

grow at the rate of interest; the same does not apply when the fringe is buying permits.
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Understanding that finding the exact equilibrium values of T f and Tm requires more

structure to game (e.g., adopt a Cournot approach as in Salant (1976)), we have demon-

strated that the exercise of market power in the after-banking market "allows" the large

firm to extend its dominant position to the banking period even if it receives none of the

permits stock (AH−AL)T0 (By extension of the dominant position we mean that there is

a monopoly phase during the banking period). The extension of this dominant position

is not something that the large firm likes in the first place, but it is a consequence of the

time inconsistency associated to competitive pricing during the banking period (followed

by a dominant seller). As the stock allocation received by the large firm increases, the

time-consistency problem diminishes and with that the large firm’s losses from following

an equilibrium path different from the binding contract path. Furthermore, the problem

may dissapear completely even before the entire stock is allocated to the large firm.

4 Final Remarks

We have investigated the effect of market power on the equilibrium path of an emission

permits market in which firms bank current permits for gradual use in later periods. In

particular, we have studied the market equilibrium for a large (potentially dominant) firm

and a competitive fringe with rational expectations. Each firm receives a stock (i.e., bank)

and flow allocation of permits. We identified permits allocations for which the binding

contract solution (i.e., full-commitment solution) is time inconsistent in the sense that

what is optimal for the large firm today is no longer optimal tomorrow. Without imposing

any particular game structure, we provided a characterization of the time-consistent

equilibrium solution and explain how it differs from the binding contract solution. We

showed, for example, that if the large firm does not receive any stock allocation but

receives a flow allocation that allows it to enjoy a dominant position in the after-banking

market, this dominant position gets extended to the banking period despite the large

firm is worse off; otherwise the equilibrium path would be time inconsistent.
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5 Appendix: the commitment solution in case µ = 0

The solution to the following problem characterizes the behavior of the fringe (dependence

on time is suppressed):

max
Qf (t),Xf

Z ∞

0

(PXf − Cf(Qf)) e
−rtdt (25)

s.t. Ḃf = Af +Qf +Xf − Uf [λf ] (26)

Bf ≥ 0 [φf ] (27)

Bf(0) > 0, {P (t) : t ∈ [0,∞)} given. (28)

Variable Xf is the sales by the fringe and, in equilibrium, satisfies Xf = −Xm. The

current-value Lagrangian is L = H+ φfBf where the current-value Hamiltonian is

H =PXf − Cf(Qf) + λf(Af + Qf + Xf − Uf). The necessary conditions are summa-

rized by the system

Ḃf = Af +Qf(P ) +Xf − Uf (29)

Ṗ = rP − φf (30)

where φf = 0 if Bf(t) > 0 and φfBf(t) = 0.

Since the large agent is explicitly Stackelberg leader, he can take the system (29)-(30)

and Xf = −Xm as constraints and solve

max
Qm,Xm

Z ∞

0

[PXm − Cm(Qm)]e−rtdt (31)

s.t. Ḃm = Am +Qm −Xm − Um [λm] (32)

Ḃf = Af +Qf(P ) +Xm − Uf [β] (33)

Ṗ = rP − φf [γ] (34)

Bm ≥ 0 [φm] (35)

Bm(0) = 0, Bf(0) > 0, P (0) free (36)
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The current-value Lagrangian for this problem is L = H+φmBm, where H = PXm−
Cm(Qm)+λm[Am+Qm−X−Um]+β[Af+Qf+X−Uf ]+γ[rP−φf ] is the current-value
Hamiltonian. Necessary conditions include:

P − λm + β = 0 (37)

−C 0
m(Qm) + λm = 0 (38)

λ̇m = rλm − φm, φm ≥ 0, φmBm = 0 (39)

β̇ = rβ (40)

γ̇ = rγ −Xm − βQ0
f(P )− rγ (41)

γ(0) = 0. (42)

The initial condition for (34) is lacking which necessitates the condition (42) (see Simaan

and Cruz, 1973). The commitment solution along which prices grow at the rate of interest

and the large firm does not accumulate a bank can be characterized as follows: for all

t ∈ [0, Tm],

C 0
m(Qm) = C 0

m(Qm(0))e
rt < P (0)ert

C 0
f(Qf) = C 0

f(Qf(0))e
rt = P (0)ert

Xm = Am +Qm − Um

Bm = 0

Bf(T
m) = 0

The initial values {Qm(0),Qf(0)}and time Tm can be found such that the stock Bf(0)

is exhausted exactly at t = Tm and P (0)erT
m
= Pm. The solution satisfies (37)-(42) for

t < Tm if we set φm = 0. For t ≥ Tm, we should set φm = rλm > 0 and φf = rPm > 0.

Time-consistency would require that γ(t) = 0 for all t (see Simaan and Cruz, 1973),

which is clearly not the case: since β = C 0
m(Qm) − P < 0, Xm 6= 0, and Q0

f(P ) > 0,

the shadow value of the constraint (34) is changing over time, γ̇ = −Xm − βQ0
f(P ) =

−Am −Qm + Um − [C 0
m(Qm)− P ]Q0

f(P ) 6= 0. If the leader had a chance to reoptimize
at some t0 > 0, he would like to set γ(t0) = 0 and possibly choose P (t0) 6= P (0)ert

0
. This

15



revision for the price must occur when Bf is small enough, as we argue in the text.
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