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1.  Introduction  

This paper examines the behavior of natural gas and crude oil price volatility since 1990.  

Prices of crude oil and especially natural gas rose sharply (but temporarily) during late 2000, and 

natural gas trading was buffeted by the collapse of Enron in late 2001 suggesting to some that 

volatility in these markets has increased.  Whether or not this is true, volatility has been high, and 

(like prices themselves) fluctuates dramatically.   

Understanding the behavior of price volatility in natural gas and crude oil markets is 

important for several reasons.  Persistent changes in volatility can affect the risk exposure of 

producers and industrial consumers of natural gas and oil, and alter the incentives to invest in 

natural gas and oil inventories and facilities for production and transportation.  Likewise, 

volatility is a key determinant of the value of commodity-based contingent claims, whether 

financial or “real.”  Thus understanding the behavior of volatility is important for derivative 

valuation, hedging decisions, and decisions to invest in physical capital tied to the production or 

consumption of natural gas or oil.    

In addition, including volatility as a “market” variable can help us better understand the 

short-run market dynamics for natural gas, oil, and commodities in general.  As I have discussed 

in an earlier paper (2002), volatility should in principle affect the demand for storage, and should 

also affect the total marginal cost of production by affecting the value of firms’ operating options 

and thus the opportunity cost of current production.  In particular, greater volatility should lead 

to an increased demand for storage, and an increase in both spot prices and marginal convenience 

yield.1  Thus, changes in volatility may help explain changes in these other variables.  

With this in mind, I address the following questions:  First, has natural gas and/or crude oil 

price volatility increased or decreased in a significant way since 1990, and in particular, are there 

measurable trends in volatility?  Related to this, have the events surrounding the collapse of 

Enron affected volatility, i.e., was there a significant short-term increase in volatility around the 

time of the collapse?  Second, is there evidence that natural gas and crude oil volatilities are 

                                                 
1 Using weekly data for the petroleum complex over the period 1984 to 2001, I show in Pindyck (2002) that the 
theoretical relationships between volatility and other market variables are well supported by the data for heating oil, 
but less so for crude oil and gasoline.  The role of volatility as a determinant of the opportunity cost of current 
production has also been spelled out and tested by Litzenberger and Rabinowitz (1995).   Finally, for a general 
introduction to the interrelationships between price, inventories, and convenience yields, see Pindyck (2001). 
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interrelated, i.e., can changes in one help predict changes in the other?  Third, although volatility 

clearly fluctuates over time, how persistent are the changes?  If changes are very persistent, then 

they will lead to changes in the prices of options and other derivatives (real or financial) that are 

tied to the prices of these commodities.  If, on the other hand, changes in volatility are highly 

transitory, they should have little or no impact on market variables or on real and financial option 

values.  Finally, extending the work in Pindyck (2002), I revisit the question off whether changes 

in volatility are predictable.  

To address these questions, I use daily futures price data for natural gas and crude oil, along 

with data on interest rates, to infer daily spot prices and daily values of the net marginal 

convenience yield.  From the log price changes (adjusted for non-trading days) and marginal 

convenience yield, I calculate daily and weekly returns from holding each commodity.  I then 

estimate volatility in three different ways.  

First, using a five-week overlapping window, I estimate weekly series for price volatility by 

calculating sample standard deviations of (adjusted) log price changes.  As Campbell et. al. 

(2001) point out in their study of stock price volatility, in addition to its simplicity, this approach 

has the advantage that it does not require a parametric model describing the evolution of 

volatility over time.2  Second, I estimate series for conditional volatility by estimating GARCH 

models of the weekly returns on the commodities, and I compare the volatility estimates from 

these models to the sample standard deviations.  Third, I estimate a daily series for conditional 

volatility by estimating GARCH models of the daily returns on the commodities. 

I study the behavior of volatility in two different ways.  First, using the estimated weekly 

sample standard deviations, I test for the presence of time trends, I test whether volatility was 

significantly greater during the period of the Enron collapse, and I examine whether gas (oil) 

volatility is a significant predictor of oil (gas) volatility.  I also use these series to estimate the 

persistence of changes in volatility.  Second, I address these same questions using weekly and 

daily GARCH models of commodity returns.  For example, I can test whether a time trend or a 

dummy variable for the Enron period is a significant explanator of volatility (and/or an 

explanator of returns) in the context of the GARCH framework.  Likewise, the estimated 

                                                 
2 Schwartz (1997) and Schwartz and Smith (2000) have shown how futures and spot prices can be used can be used 
to estimate the parameters of a mean-reverting price process and derive values of commodity-based options.  That 
approach also yields implicit time-varying estimates of volatility. 
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coefficients from the variance equation of each GARCH model provide a direct estimate of the 

persistence of volatility shocks. 

I focus on the volatility of prices, but one might ask whether that is the most relevant 

measure of volatility.  Putting aside issues of data availability, one could instead examine the 

volatility of consumption, production, or inventories.  That would, in fact, be appropriate if the 

objective was to explain the motivations for holding inventories, and in particular the role of 

production and/or consumption smoothing, and production-cost smoothing, as determinants of 

inventory demand.3  My concern, however, is the overall market, and the spot price is the best 

single statistic for overall market conditions.  Spot price volatility reflects the volatility of current 

production, consumption, and inventory demand, as well as volatility in the expected future 

values of these variables.4 

The results of this study can be summarized as follows: (1) I find a statistically significant 

positive trend in volatility for natural gas (but not for crude oil).  However, this trend is not 

significant in economic terms; over a ten year period, it amounts to about a 3-percent increase in 

volatility.  (2) There is no statistically significant increase in volatility during the period of the 

Enron collapse.  (3) The evidence is mixed as to the interrelationship between crude oil and 

natural gas returns and volatilities.  Using daily data, crude oil returns are a significant predictor 

of natural gas returns (but not the other way around), and crude oil volatility is a significant 

predictor of natural gas volatility.  Using weekly data, however, these results are less clear-cut.  

(4) Shocks to volatility are generally short-lived for both natural gas and crude oil.  Volatility 

shocks decay (i.e., there is reversion to the mean) with a half-life of about 5 to 10 weeks.  

In the next section, I discuss the data and the calculation of returns and weekly sample 

standard deviations.   All of the empirical work is presented in Section 3.  Section 4 concludes. 

2.  The Data 

I begin with natural gas and crude oil futures price data covering the period May 2, 1990 

through February 26, 2003.  (The start date was constrained by the beginning of active trading in 

natural gas futures.)  To obtain a weekly series for volatility, I use the sample standard deviations 

                                                 
3 Pindyck (1994) addresses these issues; also see Eckstein and Eichenbaum’s (1985) study of crude oil inventories. 
4 Furthermore, one cannot actually put aside issues of data availability.  Although weekly data are available for U.S. 
production, consumption, and inventories of natural gas and crude oil, daily data are not. 
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of adjusted daily log price changes in spot and futures prices.  However, I also obtain estimates 

of conditional volatility from GARCH models of weekly and daily returns.  These calculations 

are discussed in detail below. 

2.1. Spot Prices and Weekly Volatility 

For each commodity, daily futures settlement price data were compiled for the nearest 

contract (often the spot contract), the second-nearest contract, and the third-nearest.  These prices 

are denoted by F1, F2, and F3.  The spot price can be measured in three alternative ways.  First, 

one can use data on cash prices, purportedly reflecting actual transactions.  One problem with 

this approach is that daily cash price data are usually not available.  A second and more serious 

problem is that a cash price can include discounts and premiums that result from relationships 

between buyers and sellers, and need not even reflect precisely the same product (including 

delivery location) that is specified in the futures contract.  A second approach, which avoids 

these problems, is to use the price on the spot futures contract, i.e., the contract that expires in 

month t.  But this approach also has problems, because the spot contract often expires before the 

end of the month.  In addition, active spot contracts do not always exist for each month. 

The third approach, which I use here, is to infer a spot price from the nearest and the next-to-

nearest active futures contracts.  This is done for each day by extrapolating the spread between 

these contracts backwards to the spot month as follows:   

  (1) 0 1/1 ( 1 / 2 ) tn n
t t t tP F F F=

where Pt is the spot price on day t, , and  are the prices on the nearest and next-to-nearest 

futures contracts, and  and n

1tF 2tF

0tn 1 are the number of days from t to the expiration of the first 

contract, and the number of days between the expiration dates for the first and second contracts.   

Given these daily estimates of spot prices, I compute weekly estimates of volatility.  To do 

this, one must take into account weekends and other non-trading days.  If the spot price of the 

commodity followed a geometric Brownian motion, then this could be done simply by dividing 

the log price changes by the square root of the number of intervening days (e.g., three days in the 

case of a week-end), and then calculating the sample variance.  However, as is well known, on 

average the standard deviation of n-day log price changes is significantly less than n  times the 
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standard deviation of one-day log price changes, when n includes non-trading days.5  To deal 

with this, I sort the daily price data by intervals, according to the number of days since the last 

trading day.  For example, if there were no holidays in a particular period, prices for Tuesday, 

Wednesday, Thursday, and Friday would all be classified as having an interval of one day, since 

there was always trading the day before.  Monday, on the other hand, would be classified as an 

interval of three days, because of the two-day weekend.  Because of holidays, some prices could 

also be assigned to intervals of two, four, or even five days (the latter occurring when a weekend 

was followed by a two-day holiday). 

For each interval set, I calculate the sample standard deviation of log price changes for the 

entire sample for each commodity.  Let  denote this sample standard deviation for log price 

changes over an interval of n days.  I then compute the “effective” daily log price change for 

each trading day as follows: 

ˆns

 
1

(log log )
ˆ ˆ/

n

n

P P
s s
τ τ

τδ −−
= . (2) 

For each week, I then compute a sample variance and corresponding sample standard deviation  

using these daily log price changes for that week and the preceding four weeks: 

 2
t

1

1σ̂ (
1

N

t tN τ
τ

)δ δ
=

=
− ∑ − , (3) 

where N is the number of “effective” days in the five-week interval.  Eqn. (3) gives the sample 

standard deviation of daily percentage price changes; to put it in weekly terms, I multiply by 

30 / 4  = 7.5 .  The resulting weekly series is my measure of volatility, σ . t

2.2. Daily and Weekly Returns 

As discussed above, I obtained weekly estimates of volatility from the sample standard 

deviations of (adjusted) log daily price changes over five-week intervals.  An important 

advantage of this approach (besides its simplicity) is that it does not require a parametric model 

describing the evolution of volatility over time.  However, there are also disadvantages.  The first 

is that the use of overlapping intervals introduces serial correlation as an artifact, which makes it 

                                                 
t

5 If  follows a geometric Brownian notion, tP logtp P=  follows an arithmetic Brownian notion, so that 

1var ) var( )t n t t t ( p p n p p+ +− = − . 
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more difficult to discern the time-series properties of volatility.  A second disadvantage is that 

even the use of a five-week interval yields imprecise estimates of the sample standard deviation.  

Hence, I also estimate volatility from GARCH models of commodity returns.  These models can 

include parameters that test for time variation (such as trends or an “Enron effect”), and have the 

additional advantage that the time-series properties of volatility (the ARCH and GARCH 

components, which determine the persistence of shocks to volatility) are estimated along with the 

volatility itself. 

Marginal Convenience Yield.  To calculate the total return on the physical commodity, I 

need to know the net marginal convenience yield at each point in time, i.e., the value of the flow 

of production- and delivery-facilitating services from the marginal unit of inventory, net of 

storage costs.  Denoting net marginal convenience yield by tψ , it can be measured from spot and 

futures prices as follows: 

     1(1 )t t tr P F tψ = + − ,     (4) 

where F1t is the futures price at time t for a contract maturing at time t + 1, and tr  is the one-

period riskless interest rate.  I calculate values of tψ  for every trading day using the futures price 

corresponding as closely as possible to a 1-month interval from the spot price.  (When there are 

few or no trades of the nearest futures contract, as sometimes occurs with natural gas, the next-

to-nearest contract is used instead.)  Also, I use the yield on 3-month Treasury bills, adjusted for 

the number of days between Pt and F1t, for the interest rate rt.   

In what follows, I will use both daily and weekly series for the marginal convenience yield.  

I therefore convert the net marginal convenience yields calculated above into daily terms, i.e., 

dollars per unit of commodity per day.  For days followed by another trading day (e.g., a 

Monday), I do this simply by dividing the values of tψ calculated above by the number of days 

between Pt and F1t.  For days followed by n non-trading days, I multiply these values by n+1.  

(Thus for a Friday, which is typically followed by n = 2 non-trading days, the convenience yield 

is the flow of value from holding a marginal unit of inventory over the next 3 days.)  As 

explained below, this daily series is used to compute daily returns from holding the commodity.   

To obtain a weekly series, I use the calculated values of tψ  for the Wednesday of each week, 

and multiply those values by 7 so that the convenience yield is measured in dollars per unit of 
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commodity per week.6  I then use this weekly series to calculate weekly returns from holding the 

commodity. 

Calculating Returns.  The total return from holding a unit of a commodity over one period 

is the capital gain or loss over that period, plus the “dividend,” which is the net marginal 

convenience yield, i.e., the flow of benefits to producers or consumers from holding the marginal 

unit of inventory, net of storage costs.7  I calculate a series of daily (weekly) returns by summing 

the “effective” daily log price changes over each day (week) and adding to this the estimate of 

daily (weekly) convenience yield.  The weekly return, for example, is calculated as: 

 
1

T

tR τ
τ

tδ ψ
=

= +∑  (5) 

where τδ is given by eqn. (2), and T is the number of days in the week.  A series for the daily 

return is calculated by using the effective daily log price change for each effective trading day 

and adding the daily flow of marginal convenience yield.8   

3.  The Behavior of Volatility and Prices  

In this section, I examine the behavior of natural gas and crude oil price volatility using the 

weekly time series of (overlapping) sample standard deviations of adjusted log price changes.  I 

also discuss the behavior of spot prices themselves, and the relationship of price levels to 

volatility.  Based on these time series alone, there is little evidence of a trend in volatility, nor is 

there evidence of a significant increase in volatility for natural gas or crude oil during the period 

of the Enron collapse.  In addition, changes in volatility appear to be highly transitory, with a 

half-life of several weeks. 

As an alternative way of measuring volatility, I estimated GARCH models of the weekly 

returns to holding the commodity, and from these models estimated conditional standard 

deviations on a weekly basis.  I test for changes in volatility over time by introducing a time 

trend and an Enron dummy variable in the variance equations of the GARCH models.  I show 

that the results are similar to those obtained from the weekly sample standard deviations.  

                                                 
6 If Wednesday is a holiday, I use Thursday’s price. 
7 Thus, the price of a storable (and stored) commodity should equal the present value of the expected flow of 
marginal convenience yield.  This model of price has been tested in Pindyck (1993). 
8 Note that because I use effective trading days, my daily series will have about 20 data points per month. 
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Finally, I used the original daily adjusted return series to estimate daily GARCH models.  These 

provide estimates of conditional standard deviations on a daily basis, and are also used to test for 

time trends and an Enron effect, and to estimate the persistence of changes in volatility. 

3.1.  Weekly Sample Standard Deviations 

Figures 1 and 2 show the weekly series for the spot price and volatility of natural gas and 

crude oil, where volatility is measured as the sample standard deviations of adjusted log price 

changes.  Note that for both commodities, volatility is high, and is itself volatile.  The mean 

values of volatility are 12.8 percent per week for natural gas and 5.9 percent per week for crude 

oil; the corresponding standard deviations are 7.0 percent for natural gas and 3.2 percent for 

crude oil.  Natural gas and crude oil volatilities are correlated, but only weakly so; the coefficient 

of correlation for the two series is 0.169.  As expected, both volatility series have high degrees of 

skewness and kurtosis; the skewness coefficient and degree of kurtosis are 1.60 and 6.99 

respectively for natural gas, and 1.76 and 7.77 for crude oil. For the log of volatility, these 

coefficients are –0.46 and 3.99 respectively for natural gas, and 0.23 and 2.84 for crude oil.  For 

both commodities, these coefficients are roughly consistent with a normal distribution for the log 

of volatility.  However, a Jarque-Bera test rejects normality in both cases at the 1-percent level). 

As Figures 1 and 2 illustrate, periods of unusually high volatility tend to accompany sharp 

increases in the spot price.  In the case of crude oil, for example, volatility was high in late 1990 

and early 1991 following the Iraqi invasion of Kuwait, as spot prices reached $40 per barrel.  

However, there were also periods of high volatility that accompanied unusually low spot prices, 

e.g., during 1998 for both commodities.  Overall, volatility and price are moderately correlated; 

the correlation (in levels) is .27 for natural gas and .37 for crude oil.   

Was volatility unusually high during the period of Enron collapse?  The Enron bankruptcy 

sharply reduced spot and forward trading in natural gas and electricity, and also led to 

speculation over net long and short positions in natural gas.  This was likely to have caused 

increased uncertainty over natural gas prices, which could have spilled over into crude oil.  

Pinpointing the beginning of the Enron collapse is difficult, but clearly by September 2001 

analysts began questioning Enron’s valuation.  (On September 26, 2001, Kenneth Lay made his 

famous announcement to employees that the stock is “an incredible bargain.”)  On October 16, 

2001, Enron reported a $638 million third-quarter loss and disclosed a $1.2 billion reduction in 
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shareholder equity.  Further financial statement revisions were announced during October and 

November, and Enron filed for Chapter 11 bankruptcy protection on December 2. 

I defined the period of the Enron collapse as August 29 to December 5, 2001, and created a 

dummy variable that takes on the value 1 during this period and 0 otherwise.  Figure 3 shows 

natural gas and crude oil price volatility from the middle of 2000 through the middle of 2002, 

with the Enron period shaded.  Natural gas volatility reached a peak during this period of 38 

percent per week, and crude oil volatility was also unusually high.  I examine the significance of 

these increases in volatility in the context of forecasting regressions.   

I have shown elsewhere (Pindyck (2002)), using data for crude oil, heating oil and gasoline, 

that price volatility cannot be forecasted using market variables for that commodity (such as 

production, inventories, or convenience yields), or using macroeconomic variables (such as 

interest rates).  As mentioned above, there is a contemporaneous positive correlation between 

volatility and the price level itself (and thus between volatility and the contemporaneous 

convenience yield), but little or no correlation with lagged prices or other market variables.  As 

discussed below, the only variables that do have forecasting power for volatility are its own 

lagged values (i.e., volatility can be modeled as an ARMA process), and possibly lagged values 

of volatility for another commodity (e.g., crude oil in the case of natural gas). 

Table 1 shows simple forecasting regressions for volatility.  In columns (1) and (4), the 

explanatory variables are 6 lags of volatility and the Enron dummy variable.  For natural gas, the 

Enron dummy is marginally significant, and for crude oil it is insignificant.  Even for natural gas, 

however, it has little economic significance, temporarily adding about 1.5 percent to an average 

volatility of about 20 percent.  In columns (2) and (5), a time trend is added; in both cases it is 

insignificant, and has almost no effect on the other estimated coefficients.  Finally, columns (3) 

and (6) test whether lagged values of crude oil volatility help explain natural gas volatility, and 

vice versa.  For natural gas, the answer is ambiguous: an F-test on the joint significance of the 

lagged crude oil volatility terms in column (3) has a value of 1.84, which is significant at the 10-

percent level.  Lagged values of natural gas volatility, however, are not significant explanators of 

crude oil volatility: the corresponding F-test for column (6) yields a value of 1.39.9   

                                                 
9 Note that when lagged values of volatility for the second commodity are added to the regression, the Enron dummy 
becomes insignificant.  However, this can simply reflect the fact that volatility for both commodities was unusually 
high during the Enron period.   



 10

The bottom of Table 1 shows the sum of the autoregressive coefficients for each equation, 

along with the implied half-life for shocks to volatility.  The half-life is about five to six weeks 

for natural gas, and eleven to twelve weeks for crude oil.  Thus, although volatility itself is quite 

volatile, these simple autoregressive models show shocks to volatility to be quite transitory, 

particularly for natural gas.   

The volatility series shown in Figures 1 to 3 and used in the regressions in Table 1 suffer 

from two main problems.  First, the sample standard deviations are estimated from daily log 

price changes for overlapping five-week intervals.  Thus, the series are serially correlated by 

construction.  Second, even with five-week intervals, each sample standard deviation is based on 

at most twenty-five observations.  One way to get around these problems is to estimate GARCH 

models of the commodity returns themselves.   I turn to that next. 

3.2.  GARCH Models of Weekly Returns  

The models I estimate have the following form.  The equation for the weekly return to 

holding the commodity is given by:   

 
11

0 1 2 3 4
1

RET TBILL ENRON TIME DUM ,t t t t t j
j

a a a a a b jt tσ ε
=

= + + + + + +∑  (6) 

where  are monthly dummy variables.  In this equation, the treasury bill rate should 

affect the return because it is a large component of the carrying cost of holding the commodity.  

Likewise, we would expect the return to increase with its own riskiness, so 

DUM jt

,tσ  the standard 

deviation of the error term ,tε  is included in the equation.  Finally, I also include the Enron 

dummy variable and a time trend to test for any systematic time variation in returns.  

The second equation explains the variance of tε  as a GARCH (p,q) process: 

  (7) 2 2 2
1 2

1 1

ENRON TIME
p q

t j t j j t j t t
j j

σ α α ε β σ γ γ− −
= =

= + + + +∑ ∑

 
The Enron dummy and a time trend are included to test for time variation in volatility. 

Table 2 shows maximum likelihood estimates of this model.  Because the return includes the 

current and previous week’s price, the model is estimated with and without a first-order moving 

average error term in Equation (6).  In all cases the number of lags in eqn. (7) is chosen to 

minimize the Akaike information criteria.   
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The results for crude oil (in columns 3 and 4 of Table 2) are consistent with the basic theory 

of commodity returns and storage.  Returns have a strong positive dependence on the interest rate 

and on volatility (as measured by the standard deviation of tε ).  In the case of natural gas, 

however, both the interest rate and volatility are statistically insignificant in the returns equation.  

The coefficient on the time trend in the returns equation is insignificant, but the corresponding 

coefficient in the variance equation is positive and significant in all cases.  For both 

commodities, the variance of returns is positively related to the Enron dummy, but in all cases 

the coefficient is statistically insignificant.   Thus, I find a clear statistically significant positive 

trend in volatility for both gas and oil, but no separate impact of the Enron events.  However, this 

trend is not economically significant.  For natural gas, for example, the time trend coefficient is 

around , which implies a 10-year increase in the average variance of .00035.  The mean 

value of volatility (standard deviation of returns) is about .13 for natural gas, so the mean 

variance is about .017.  Thus the trend represents a roughly 2-percent increase in the variance 

over a decade. 

77 10−×

Table 2 also shows estimates of the half-life of volatility shocks.  This is determined by the 

sum of the ARCH and GARCH coefficients in the variance equation, i.e.,  

 Half-life log(.5) / log( ).j jα β= +∑ ∑  (8) 

The half-life of volatility shocks for natural gas is about seven to ten weeks, and for crude oil is 

about seven to eight weeks.  These numbers differ slightly from the estimates in Table 1.  For 

crude oil, the estimated half-life is about seven to eight weeks, which is shorter than the 

estimates in Table 1.  Overall, however, shocks to volatility again appear transitory for both 

natural gas and crude oil.   

We can compare the volatility estimates from these GARCH models (i.e., the conditional 

standard deviation of tε ) with the sample standard deviations.  Using the GARCH models that 

include the moving average term, i.e., columns 2 and 4 of Table 2, the simple correlation of the 

two volatility series is .593 for natural gas and .665 for crude oil.  Figure 4 shows the two 

volatility series for natural gas.  The two series generally track each other, but the GARCH 

volatility is lower on average (a mean of 8.7 percent vs. 12.8 percent for the sample standard 

deviation) and has a higher degree of kurtosis.  
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3.3.  GARCH Models of Daily Returns 

An advantage of estimating GARCH models of weekly returns is that the resulting estimates 

of the conditional standard deviations can be compared to the weekly estimates of the sample 

standard deviations.  However, these weekly models do not make use of all of the available daily 

data.  I turn now to the use of that data for the estimation of GARCH models of daily returns.   

These models also take the form of eqns. (6) and (7), except that I do not include monthly 

dummy variables in the returns equation.  Once again, in each regression the number of lags is 

chosen to minimize the Akaike information criterion.   

The results are shown in Table 3.  As with the weekly GARCH models, the results for crude 

oil are consistent with the theory of commodity returns and storage, but the results for natural gas 

are not.  Crude oil returns have a strong positive dependence on the interest rate and on volatility, 

but both the interest rate and volatility are statistically insignificant in the equation for natural 

gas returns.  And as with the weekly models, there is no statistically significant impact of the 

Enron events on volatility for either commodity.  The time trend for volatility is now only 

marginally significant for natural gas, and insignificant for crude oil, but even for natural gas, it 

is only of marginal economic significance.  (Using an average estimate of 85.35 10−×  for the 

trend coefficient, the 10-year trend increase in the variance of daily returns would be .00020, 

which is about 9 percent of the mean daily variance of .00228.) 

The estimates of the half-life of volatility shocks vary across the different specifications, but 

overall are not very different from the results in Tables 1 and 2.  The half-life is about 6 to 9 

weeks for natural gas, and 3 to 11 weeks for crude oil.  Once again, shocks to volatility appear to 

be fairly transitory for both commodities.   

3.4.  Returns and Volatilities Across Markets 

I turn next to the interrelationship between crude oil and natural gas returns and volatilities.  

The results in Table 1, based on the 5-week sample standard deviations, provided some evidence 

that crude oil volatility has some predictive power with respect to natural gas volatility (but not 

the other way around).  Here I explore this further by running Granger causality tests between 

gas and oil using the sample standard deviations, and the weekly and daily volatilities from the 

GARCH models.  I also run these test on weekly and daily gas and oil returns.  These tests are 

simply F-tests of the exclusion restrictions b b1 2 ... 0Lb= = = =  in the regression equation 
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0
1 1
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t i t i
i i

y a a y b x−
= =

= + +∑ ∑ i t i− .  A failure to reject these exclusion restrictions is a failure to reject 

the hypothesis that xt Granger-causes yt.  When running these tests, I use 2, 4, and 6 lags for the 

weekly regressions, and 4, 6, 10, 14, 18, and 22 lags for the daily regressions. 

The results are shown in Table 4.  The first two panels show tests for the weekly and daily 

returns.  The weekly returns show no evidence of causation in either direction, but for the daily 

returns, I can reject the hypothesis that there is no causality from oil to gas.  Given that oil prices 

are determined on a world market, if there is causality in either direction we would expect it to 

run from oil to gas, and not the other way around. 

The next three panels show test results for volatility.  The tests based on the weekly sample 

standard deviations and the daily GARCH models show evidence of causality from oil to gas, 

and not from gas to oil, as expected.  However, the results using the volatility estimates from the 

weekly GARCH models show just the opposite.  But note that the simple correlations of the oil 

and gas volatilities are much higher for the weekly sample standard deviations and the daily 

GARCH estimates (.170 and .146, respectively) than for the weekly GARCH estimates (.092), so 

I discount these latter results.  Overall, these tests (along with the regressions in Table 1) provide 

some evidence that crude oil volatility is a predictor of natural gas volatility.  

4.   Summary and Conclusions 

Using daily futures price data, I examined the behavior of price volatility for natural gas and 

oil over the period May 1990 to February 2003.  The results can be summarized as follows. 

First, there is evidence of a statistically significant positive time trend in volatility for 

natural gas, and to a lesser extent for oil.  This trend, however, is small, and not of great 

economic significance.  Given the fairly limited length of my sample, there are certainly no 

conclusions that can be drawn about long-term trends.  As for the events surrounding the demise 

of Enron, they do not appear to have contributed to any significant increase in volatility. 

Second, there is some evidence that crude oil volatility and returns has predictive power for 

natural gas volatility and returns, but not the other way around.  But this predictive power is 

quite limited; for practical purposes, volatility can be modeled as a pure ARMA process. 

Third, although volatility fluctuates considerably, shocks to volatility are short-lived, with a 

half-life on the order of 5 to 10 weeks.  This means that fluctuations in volatility could certainly 
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affect the values of financial gas- or oil-based derivatives (such as options on futures contracts), 

because such derivatives typically have a duration of only several months.  But fluctuations in 

volatility should not have any significant impact on the values of most real options (e.g., options 

to invest in gas- or oil-related capital), or the related investment decisions.  Of course these 

fluctuations might lead one to think that financial or real options should be valued using a model 

that accounts for stochastic volatility.  However, the numerical analyses of Hull and White 

(1987), among others, suggests that treating volatility as non-stochastic will make little 

quantitative difference for such valuations. 

Sharp (but temporary) increases in the prices of crude oil and natural gas, along with the 

collapse of Enron, have created a perception that volatility has increased significantly, increasing 

the risk exposure of energy producers and consumers.  This does not seem to be the case.  The 

increases in volatility that I measure are too small to have economic significance, and 

fluctuations in volatility are generally short-lived.   
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(1) (2) (3) (4) (5) (6)
Dep. Var. NG NG NG CRUDE CRUDE CRUDE
Const. 0.0149 0.014 0.015 0.0032 0.0027 0.0018

(5.71) (4.62) (4.38) (3.40) (2.40) (1.40)

NGSIG (-1) 1.0550 1.0540 1.0445 -0.0245
(28.12) (28.06) (27.69) (-1.67)

NGSIG (-2) -0.0906 -0.0904 -0.0799 0.0281
(-1.74) (-1.73) (-1.53) (1.38)

NGSIG (-3) -0.0606 -0.0607 -0.0574 0.0141
(-1.17) (-1.17) (-1.11) (0.70)

NGSIG (-4) 0.1969 0.1968 0.1906 -0.004
(3.81) (3.81) (3.68) (-0.20)

NGSIG (-5) -0.5118 -0.5115 -0.5119 0.0065
(-9.82) (-9.81) (-9.81) (0.32)

NGSIG (-6) 0.2930 0.2916 0.2924 -0.0118
(7.84) (7.79) (7.80) (-0.80)

ENRON 0.0149 0.0142 0.0132 0.0046 0.0042 0.0035
(2.00) (1.88) (1.73) (1.63) (1.44) (1.18)

TIME 3.54E-06 4.18E-06 -2.25E-06 1.83E-06
(0.60) (0.70) (0.99) (0.79)

CSIG (-1) 0.2158 1.082 1.0804 1.0794
(2.33) (30.10) (30.03) (29.86)

CSIG (-2) -0.0915 -0.1548 -0.1546 -0.1480
(-0.68) (-2.96) (-2.95) (-2.82)

CSIG (-3) -0.0478 -0.0130 -0.013 -0.0166
(-0.35) (-0.24) (-0.24) (-0.31)

CSIG (-4) -0.1321 0.1122 0.1121 0.1086
(0.98) (2.13) (2.13) (2.06)

CSIG (-5) 0.0905 -0.4755 -0.4756 -0.4812
(0.67) (-9.09) (-9.09) (-9.15)

CSIG (-6) -0.0522 0.3923 0.3908 0.3956
(-0.56) (10.96) (10.91) (10.95)

R2 0.846 0.846 0.849 0.893 0.890 0.891
Σ AR(i) 0.882 0.880 0.878 0.943 0.940 .938

Half-Life (weeks) 5.5 5.4 5.3 11.9 11.2 10.8

Table 1:  Forecasting Equations for Volatility
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(1) (2) (3) (4)
Dep. Var. NG NG CRUDE CRUDE
Const. 0.0160 0.0150 -0.0577 -0.0498

(1.12) (1.11) (-9.55) (-5.75)
σ -0.1005 -0.1085 0.3673 0.2978

(-0.71) (-0.90) (5.21) (3.28)
TBILL -0.1303 -0.1255 0.7694 0.7204

(-1.43) (-1.52) (12.24) (8.01)
ENRON -0.0622 -0.0577 -0.0270 -0.0211

(-1.56) (-1.63) (-0.87) (-0.45)
TIME 1.42E-05 1.67E-05 -1.53E-05 -6.66E-07

(1.05) (1.28) (-1.39) (0.04)
MA (1) -0.1196 0.3432

(-2.96) (10.87)

CONST. 0.0005 0.0004 9.31E-05 7.03E-05
(4.78) (3.93) (0.57) (0.68)

ARCH (1) 0.1237 0.0999 0.2434 0.0400
(2.34) (2.08) (4.79) (1.32)

ARCH (2) -0.0644 -0.0596 0.1488 0.2072
(-1.14) (-1.13) (3.58) (3.15)

ARCH (3) 0.0292 0.0500 0.1446 -0.0429
(0.62) (0.99) (3.96) (-1.02)

ARCH (4) 0.2458 0.2638 0.2504 0.2838
(1.72) (1.48) (5.60) (5.06)

ARCH (5) -0.2217 -0.2463
(-1.87) (-1.63)

GARCH (1) 0.8427 0.9359 0.1174 0.5585
(9.08) (8.79) (1.40) (3.13)

GARCH (2) 0.0510 -0.0127 -0.1699 -0.5046
(0.32) (0.07) (-2.00) (-2.52)

GARCH (3) -0.1301 -0.1470 -0.3591 0.1020
(-1.01) (-0.98) (-4.71) (0.48)

GARCH (4) 0.2778 0.2629 0.5343 0.2690
(3.65) (2.16) (7.44) (2.09)

GARCH (5) -0.2422 -0.2134
(-3.40) (-2.39)   

ENRON 0.0028 0.0022 0.0027 0.0035
(1.06) (0.98) (0.77) (1.09)

TIME 7.56E-07 6.40E-07 2.15E-06 1.46E-06
(4.98) (4.20) (2.58) (4.37)

Half-Life (weeks) 7.5 10.1 7.3 7.6
Note:  Regression equations for weekly returns include monthly dummy variables, which are not
reported.  Number of ARCH and GARCH terms chosen to minimize Akaike information criterion.

Table 2:  GARCH Models of Weekly Returns

VARIANCE EQUATION
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(1) (2) (3) (4) (5) (6)
Dep. Var. NG NG NG CRUDE CRUDE CRUDE
CONST -0.0004 0.0031 -0.0004 -0.0012 -0.0013 -0.0014

(-0.15) (1.35) (-0.13) (-1.46) (-1.52) (-1.77)

σ -0.0960 -0.0838 -0.0867 0.2196 0.2660 0.2266
(-1.79) (-1.70) (-1.60) (3.98) (6.51) (4.15)

TBILL 0.0254 0.0254 0.0237 0.0642 0.0570 0.0610
(0.47) (0.51) (0.51) (2.52) (2.24) (2.39)

ENRON -0.0071 -0.0106 -0.0167 -0.166
(-0.80) (-1.19) (-4.95) (-5.05)

TIME 2.54E-06 2.26E-06 4.86E-07 7.04E-07
(1.98) (1.81) (0.96) (1.44)

(p ,q) (8,7) (4,8) (5,8) (5,9) (4,9) (4,9)

CONST 2.08E-05 4.91E-05  2.06E-05 1.78E-06 9.57E-06 2.57E-06
(111.93) (54.78) (1136.09) (0.53) (3.63) (0.80)

ENRON 0.0005 0.0007 0.0002 0.0002
(1.78) (1.57) (0.97) (0.91)

TIME 7.32E-08 3.37E-08 1.16E-08 1.08E-08
(2.43) (1.55) (1.19) (1.16)

Half-Life (weeks) 8.5 7.8 5.8 3.2 10.7 2.9

Note:  Number of ARCH and GARCH terms chosen to minimize Akaike information criterion.  ARCH
and GARCH coefficients are not shown.

Table 3:  GARCH Models of Daily Returns

VARIANCE EQUATION:  GARCH (p ,q)
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Table 4:  Granger Causality Tests 

            
Variable  Lags  NG  Crude  Crude  NG  
    
Weekly Returns 2 No No 
   (Simple Corr. = .095) 4 No No 
 6 No No 
            
    
Daily Returns 4   Yes*   Yes* 
   (Simple Corr. = .028) 6 No     Yes** 
 10 No     Yes** 
 14 No     Yes** 
 18 No   Yes* 
 22 No No 
            
    
Weekly Volatility,  2 No  Yes* 
   Sample Stand. Dev. 4 No  Yes* 
   (Simple Corr. = .170) 6 No No 
            
    
Weekly Volatility, 2   Yes** No 
   GARCH 4   Yes** No 
   (Simple Corr. = .092) 6 Yes* No 
            
    
Daily Volatility, 4 No No 
   GARCH 6 No   Yes* 
   (Simple Corr. = .146) 10 No No 
 14 No     Yes** 
 18 No     Yes** 
 22 No     Yes** 
            

Note:  Test of x  y is an F-test of the exclusion restrictions b b1 2 ... 0Lb= = = =  in the regression  

0
1 1

L L

t i t i
i i

y a a y b x−
= =

= + +∑ ∑ i t i− .  A “no” implies a failure to reject the hypothesis that the bi’s  

equal 0, and a “yes” implies rejection at the 5% (*) or 1% (**) level. 
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