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ABSTRACT 
 

Since the Clean Air Act Amendments of 1990 (CAAA), atmospheric concentration of local pollutants has 
fallen drastically. A natural question is whether further reductions will yield additional health benefits.  
We further this research by addressing two related research questions: (1) what is the impact of 
automobile driving (and especially congestion) on ambient air pollution levels, and (2) what is the impact 
of modern air pollution levels on infant health? Our setting is California (with a focus on the Central 
Valley and Southern California) in the years 2002-2007. Using an instrumental variables approach that 
exploits the relationship between traffic, ambient weather conditions, and various pollutants, our findings 
suggest that ambient pollution levels, specifically particulate matter, still have large impacts on weekly 
infant mortality rates. Our results also illustrate the importance of weather controls in measuring 
pollution’s impact on infant mortality. 
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1 Introduction

Local air pollution levels have decreased dramatically over the past two decades. This is due, in

large part, to the Clean Air Act and its various amendments, which placed strict limits on the con-

centrations of “criteria pollutants.”1 Since 1990, the Clean Air Act Amendments of 1990 (CAAA)

have helped decrease the concentration of carbon monoxide (CO) has fallen by 68 percent; ozone

(O3) has decreased by 14 percent, while particulate matter 10 micrometers or smaller (PM10) has

decreased by 31 percent.2 These reductions have been financially costly. The Environmental Pro-

tection Agency (EPA) estimates the compliance costs of the CAAA to be $19 billion annually in

2000, increasing to $27 billion by 2010. Over half of these costs are due to the CAAA’s National

Ambient Air Quality Standards, regulating point and area sources. Regulation of mobile sources

accounts for an additional 30%.3

The benefits from air quality improvements are more difficult to measure. Estimates often rely

on correlations between pollution levels and health outcomes that may not reflect causal relation-

ships. The EPA (1999) estimates a wide range for the potential benefits in 2000 — from a low of

$16 billion to a high of $140 billion.4 This range reflects uncertainty with respect to how specific

sources affect air quality and how increasing air quality improves health outcomes. Currie and

Neidell (2005) examined how California’s reductions in carbon monoxide, particulate matter, and

ozone during the 1990s impacted weekly infant mortality rates, providing some evidence as to the

benefits of criteria pollutant reduction. We add to the understanding of these issues by address-

ing two related research questions: (1) what is the impact of automobile driving (and especially

congestion) on the ambient air pollutants considered in Currie and Neidell (2005), and (2) what is

the impact of ambient pollution on infant health in the new millennium, using local traffic varia-

tion as an instrument for pollution? In doing so, we address the potential importance of weather

conditions in the estimation of pollution’s impact on health.

Our empirical strategy is as follows: when traffic is heavy, more emissions are released into the

air, providing a correlation between traffic congestion and ambient pollution levels. In addition, we

1The term “criteria pollutants” refers to six commonly found air pollutants that are regulated by developing health-
based and/or environmentally-based criteria for allowable levels. The current criteria pollutants are: particular matter,
ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides and lead.

2Taken from http://www.epa.gov/air/airtrends/. Carbon monoxide is measured as the second highest maximum
eight hour period from 206 sites; ground-level ozone is measured as the fourth highest maximum eight hour period
from 547 sites; PM10 is measured as the second highest 24 hour period average from 325 sites.

3Available at http://www.epa.gov/air/sect812/.
4Available at http://www.epa.gov/air/sect812/.
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argue that, when regions experience unusually heavy traffic (traffic that deviates from the regional

norm), such as shocks due to accidents or road closures, these shocks to traffic, and thus pollution,

are likely to be uncorrelated with the error term in a model of infant mortality as a function of

pollution exposure.

There are a number of reasons ordinary least squares (OLS) could yield inconsistent estimates

of the impact of pollution on infant health. First, mothers may self-select into geographic regions.

If mothers with higher values for clean air choose to live in cleaner areas, and these mothers are

also wealthier or have access to better health care, OLS estimates may be biased upwards (e.g.,

Currie (2011)). In principle, including region by time fixed effects would control for this selection.

However, the researcher must choose a coarser set of time fixed effects than the periodicity of

the pollution data, leaving room for selection within the time fixed effects. Second, changes in

local economic activity may be correlated with both pollution and infant health. Regional growth

will tend to increase pollution levels, but may also be correlated with increases in income levels

and/or health care access. This would tend to bias the OLS estimate downward. Third, pollution

assignment leads to potential bias in the form of measurement error. The majority of papers in the

air pollution and health literature, including this one, assign pollution levels to a particular person,

living in a particular geographic area (e.g., zip code or county), based on pollution readings from

pollution sensors in or near this geographic area. The researcher may not know the person’s exact

residence (two recent exceptions to this limitation are Currie et al. (2009b) and Currie and Walker

(2011)), and it is unlikely that the person is stationary over the time period analyzed. In addition,

unless the exact model of spatial dispersion of the pollutant is known, even if the person lived in

the assigned location and never moved from this space, pollution would be measured with error.

Insofar as this measurement error is “classical” OLS estimates will be biased downward. If the

measurement error is correlated with pollution levels, then the bias may be in either direction.

An additional concern is that individuals engage in avoidance behavior when confronted with

bad air quality days, which will also bias OLS results toward zero. Neidell (2009) show that

attendance drops on spare the air days, and that this drives OLS estimates of the impact of ozone on

asthma hospitalizations, and Moretti and Neidell (2011) perform instrumental variables estimates

of ozone’s impact on hospitalizations, using timing of Port of Los Angeles traffic and distance to

the port as an instrument for ozone. They find IV results that are much larger than those obtained

by OLS, suggesting the presence of avoidance behavior. Similarly, Graff Zivin and Neidell (2009)

show people reallocate activities across time when faced with bad air quality days.5

5More recently, Graff Zivin et al. (2011) find people engage in avoidance behavior when dealing with water pollu-
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Shocks to traffic are a potential instrument for all three sources of bias. If people sort them-

selves based on average levels of pollution and traffic, but not shocks or the likelihood of shocks,

then our instrument strategy will satisfy the exclusion restriction; similarly, weekly variation in

traffic shocks (after conditioning on geographic and time fixed effects) are also more likely to be

uncorrelated with economic growth.6 In addition, an instrumental variables approach is a stan-

dard solution for measurement error. Conditional on the instrument being valid, this will help

alleviate attenuation bias (insomuch as no similar error is present in the traffic readings). Finally,

assuming individuals do not systematically modify their actions based on random and potentially

unobservable traffic shocks, instrumental variables estimates will help to alleviate the potential

bias of avoidance behavior.

We consider the impacts of carbon monoxide, particulate matter smaller than 10 micrometers,

and ground-level ozone on infant mortality, where the second stage of our analysis builds on the

specifications in Currie and Neidell (2005) (henceforth, CN). Our setting is California (with a fo-

cus on the Central Valley and Southern California) in the years 2002-2007. Our model of traffic

congestion, air pollution, and infant mortality combines four large data sets: the Freeway Perfor-

mance Measurement System (PeMS), which consists of traffic measurements from freeways across

California, EPA data on ambient pollution levels throughout the state, the National Climatic Data

Center information on ambient weather conditions, and Vital Statistics data on birth outcomes for

the state of California. We show that the link between traffic and pollution levels is strong while

allowing for a wide variety of weather covariates and time and location fixed effects. Our use of a

panel regression at the weekly level means we identify the relationship between unusually locally

heavy traffic and pollution, and the relationship between pollution and infant mortality.

Our instrument strategy provides a unique approach to estimation difficulties involving multiple

pollutants. Traffic alone cannot simultaneously serve as an exogenous source of variation for CO,

PM, and O3, our three pollutants of interest. This means that in order to simultaneously consider

the impacts of three pollutants, we need at least three separate instruments. We address this issue

through interactions between our traffic measure and ambient weather conditions. This allows

for the fact that auto emissions have different effects on ambient pollution levels, and specifically

which types of pollutants are most affected, depending on the weather, a relationship discussed

tion as well.
6We may be concerned that economic growth leads to additional traffic shocks. For example, economic develop-

ment may increase the number of cars on the road at any given time, thus increasing the probability of an accident. To
some degree, these types of trends will be captured by the included time fixed effects. Again, however, there remains
the problem of time period coarseness.
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further in Section 3. Our models also allow for weather conditions to enter directly as control

variables. This is to reflect the fact that traffic flows mean different things depending on the weather

conditions.

We begin our analysis by first replicating CN’s results using the same empirical specification

and time period used in their original analysis. Due to the large data sets involved and the low

probability of infant mortality, CN modify the standard discrete-time hazard specification to use

“case control” sampling methods. We employ an alternative computation-reducing strategy by col-

lapsing our data into cells to effectively preserve the full variation of the expanded discrete-time

hazard model (see Section 4). We also expand on the CN model by including additional weather

control variables. We show that the effects for CO (the pollutant with the largest statistically signif-

icant effects in CN) remain, though are smaller and noisier, suggesting the potential importance of

weather in the identification. We then show that the same model applied to data from 2002 to 2007

gives similar (though again noisier) results. Finally, we use the relationship between traffic and

pollution to estimate an instrumental variables model in the 2002-2007 period. We have two main

findings. First, under the instrumental variable approach only PM10 has a statistically significant

effect on infant mortality. Second, consistent with the presence of measurement error and/or bias

due to within-year changes in local economic activity, the results from IV are substantially larger

than those from OLS. In our preferred specification, a one-unit decrease in PM10 saves roughly 18

lives per 100,000 live births.

Our paper contributes to the literature demonstrating the use of applied microeconometric tech-

niques in questions of environmental quality and health. This literature has examined the impact of

air pollution on infant mortality and birth outcomes (Chay and Greenstone (2003a,a); Currie and

Neidell (2005); Currie et al. (2009b); Currie and Walker (2011); Sanders and Stoecker (2011) and

contemporaneous health factors (Chay et al. (2003); Neidell (2004); Currie et al. (2009a); Lleras-

Muney (2010); Moretti and Neidell (2011)), and life cycle outcomes (Sanders (2011)). Attention

has also been given to the impacts of climate change (Deschênes and Greenstone (2007); De-

schênes et al. (2009); Stoecker (2010); Deschênes and Greenstone (2011)), environmental toxins

(Reyes (2007); Currie and Schmieder (2009)), and radiation (Almond et al. (2009)) on health.

In addition to our contribution to the growing literature on air quality, environmental toxics, and

infant health, we present the first (to our knowledge) panel fixed-effects analysis of the impacts of

traffic on ambient pollution levels. Prior studies of the link between auto emissions and pollution

have typically been conducted in laboratory environments or in specific limited regions using small
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numbers of computer monitored automobiles or roadside emission sensors over a limited driving

range (for example, see Bishop and Stedman (1996) and Tiao and Hillmer (1978)). And while

Currie and Walker (2011) consider the impact of EZ-Pass toll booth modification on health, they

have little information on actual traffic flows and pollution. Our analysis provides an estimate of

the large-scale, “real world” outdoor impacts after considering interactions with ambient weather

conditions. In addition, the expansive coverage of the PeMS traffic system and EPA pollution

monitors allows us to examine impacts throughout large portions of California. These models

enable us to construct a new set of instrumental variables for pollution in an estimation of the

impact of pollution on infant health.

Our analysis unfolds as follows. Section 2 describes our data sources and data set construc-

tion. In Section 3 we summarize the chemistry of driving and air pollution, the physiology of air

pollution and infant health, the relevant transportation literature on traffic measurement, and the

relevant economics literatures on traffic externalities and air pollution’s impacts on infant health.

Section 4 outlines our empirical methodology, Sections 5 presents our main results, and Section 6

offers concluding remarks.

2 Data

In order to investigate the relationship between traffic, weather, pollution, and infant outcomes, we

combine four large data sets. All data analysis is done at the zip code-week level, and data from

each source are aggregated accordingly.

2.1 Pollution and Weather Data

Pollution data were obtained from the California Air Resources Board (CARB) website.7 The

data contain daily pollution measures for carbon monoxide, ozone, and particulate matter smaller

than 10 micrometers. CO and O3 data are maximum daily 8-hour values. PM10 data are a 24

hour average and are measured only once every six days. We take the weekly average of the daily

values. In order to obtain a zip code level measure, we follow the methodology outlined by CN.

We first calculate the distance between the zip code geographic centroid and each monitor station,

7http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm
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based on latitude and longitude location information. We then weight each station by one over its

distance from the centroid. Similar to CN, we use monitors within 20 miles of a centroid.

Weather data come from the National Climatic Data Center Global Surface Summary of the

Day (currently available at http://www.ncdc.noaa.gov/cgi-bin/res40.pl?page=gsod.html). We use

information on inches of rainfall, maximum daily temperature, average daily windspeed, specific

humidity, the number of days with any recorded rain, and the number of days with recorded fog.8

Weekly values are obtained by averaging daily values (or summing in the case of days with rain

and days with fog). Specific humidity, which is the most relevant for mortality (Barreca 2008),

is not reported in the Global Surface Summary of the Day. We calculate specific humidity using

dewpoint and air pressure as discussed in Barreca (2008). In order to calculate a zip code-level

weather variable, we use the weighting method discussed above, using weather stations within 20

miles of a zip code centroid.

2.2 Traffic Data

Data on traffic come from the Freeway Performance Management System (PeMS), maintained

by the University of California, Berkeley Department of Electrical Engineering and Computer

Sciences.9 Using sensors buried beneath freeway lanes, the PeMS records data such as estimated

average speed and total flow of cars. Measurements are taken every 30 seconds and aggregated up

to five minute, one hour, and daily values.10 Traffic data are available from 1999 onward, though

many regions considered in this analysis were not continuously available until 2002, leading to

our chosen time period of analysis. Due to current sensor placement, reliable, continuous traffic

data are only available for the Sacramento Valley, the Bay Area, and the Los Angeles Basin area

(regions 3, 4, 7, 11, and 12 in the PeMS data).

We construct our measure of traffic based on three items: total flow of cars, average speed,

and length of sensor region. Total flow of cars is simply the count of all cars that pass over a

sensor region within a particular timeframe. Average speed is calculated using flow information

8We do not make spatial adjustments for the issue of wind direction, which may introduce noise into our first stage.
Assuming this noise is random (i.e., wind direction is not associated with factors that drive traffic and pollution levels)
the error should not impact the consistency of our IV estimates. One complicating factor is that there is spatial error in
both the traffic and the pollution measures. If this spatial error is correlated then this may limit the ability of the traffic
to correct for measurement error.

9Data were obtained from the PeMS website using the Data Clearinghouse option (https://pems.eecs.berkeley.edu).
10In the event of sensor malfunctions or failures, PeMS imputes values using surrounding working sensor data and

a complex imputation algorithm. See the PeMS website for details on the methodology used.
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and sensor activity time. Our preferred metric for traffic approximates average traffic per section

of road. Sensors are designed to represent lengths of road, and each sensor is assigned a “length.”

This length is measured by (1) taking the midpoint between a sensor and the next sensor after it, (2)

taking the midpoint between a sensor and the last sensor before it, and (3) measuring the distance

between these two midpoints. In the case of no additional sensors in one (or both) direction(s), a

max distance of 2.5 miles per direction is used. We multiply by this length to get the traffic density

per section of road. Our preferred traffic measure is then:

density per section =
total flow per sensor length * sensor length

average speed
(1)

As an example, consider a monitor with a reading of 6,000 cars an hour, with an average speed of

60 miles per hour and a sensor length of 2 miles. The density for the sensor is 6000
60

= 100 cars per

mile. If the sensor “represents” two miles of road, we would then multiple that value by 2. We do

this largely to help continuity in traffic measures across regions with more vs. fewer sensors for

the same length of road. In order to obtain a weekly value, we use the sum of hourly values over

the week.

To calculate a zip code level traffic measure, we again proceed in a manner similar to that done

with the pollution and weather data, using traffic sensors within 20 miles. Our weighting strategy

varies, however, as observations are weighted and summed in such a way that we place weights on

traffic flows in terms of equivalent density at the zip code centroid.11 An individual zipcode traffic

measure using sensors s = 1, . . . , n in week w is defined as:

Trafficzipcode,week =
n∑

s=1

density per sections,week

distance+1
. (2)

For example, consider a zip code with only two sensors within 20 miles, each with a weekly

density reading of 10,000, one of which is 0 miles away and another of which is 20 miles away.

The measure for that zip code week would be:

10000

0 + 1
+

10000

20 + 1
= 10, 476. (3)

11Our variation in weighting strategies is based on the intent of weight use. In the case of pollution and weather
information, sensors represent a sample of ambient conditions near a particular location. Each additional reading
is more information regarding the true level. The closer the measurement is to that location, the more accurately
we expect it to reflect the true measure, and thus we apply greater weight to that information. With traffic, more
sensor-miles mean more traffic, not simply more information on the true traffic level.
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Given the high traffic volumes in our regions of study, our traffic number can get large. It order

to make summary statistics and coefficients more easily readable, we divide all weekly totals by

100,000.

Means across time and standard deviations for all weather, traffic, and pollution variables are

shown in Table 1.

2.3 Birth Data

Birth data come from the California Department of Public Health Birth Cohort files. Birth Cohort

files are abstracted from birth and death certificates, where the two are linked if an infant dies

within 52 weeks of birth. This allows us to link any infant that dies within the first year of life to

their birth outcomes and maternal information. We limit our sample to infants that had a gestation

period of at least 26 weeks (the beginning of the third trimester), which allows us to assign a

trimester-level pollution exposure to every infant for all three trimesters (this will be an additional

control as in CN). We also drop infants with gestation lengths greater than 42 weeks, as doctors are

likely to have induced labor by this period and such values are probably reporting or coding errors.

Due to the use of traffic as our instrument for pollution, we drop all deaths caused specifically by

auto trauma. We convert all birth/death dates to the weekly zip code level. Aside from using the

time of birth/death and the birth-mother zip code of residence, the Birth Cohort files also provide us

with various controls to be used in the analysis. These include mother’s race, education, and age,

potentially confounding birth outcomes (low birth weight and premature birth), public insurance

coverage, birth order, infant gender and, in the case of those that died, the age in weeks at death.

The use of traffic data means that we are constrained to a slightly different set of births used

in CN. In addition, we use a different time frame. As a point of comparison for how this might

influence differences in our findings, we show variation in birth outcomes across both time and

region. Columns 1 and 2 of Table 2 show outcomes for zip codes used in our replication of CN’s

results, and for those same zip codes in the timeframe of our own analysis. Columns 3 and 4 show

the zip codes used in our analysis, for both our time frame and the time frame of CN. We note

that infant mortality rates have dropped substantially from their period of analysis to ours. Most

important, however, is that for similar time periods the zip codes used in either analysis do not

appear fundamentally different from each other. This is not surprising, as there are many zip codes

which appear in both sets.
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3 The Relationships between Traffic, Weather, and Ambient

Pollution

3.1 Traffic and pollution

Gasoline and diesel combustion engines create several pollutants as a result of the combustion

process. All three pollutants considered in this analysis have been tied to automobile traffic. For

example, it has been estimated that up to 90% of all CO in the United States comes from automobile

fuel combustion.12 Automobiles can increase PM levels through the fuel combustion process (e.g.,

formation of nitrogen oxides, volatile organic compounds, and, in the case of diesel engines, diesel

soot) or through the physical act of friction resulting from wheel to road contact, which creates and

spreads road dust. O3 is a secondary pollutant and as such is not directly created by automobiles,

but is a byproduct of traffic pollutants nonetheless.13 As noted above, fuel combustion produces

nitrogen oxides, volatile organic compounds, and CO. Various photochemical reactions between

these three pollutants can result in the formation (or destruction) of O3. Due to its secondary

pollutant nature, the relationship between traffic and O3 is more complicated, and based on the

atmospheric conditions, traffic and fuel combustion influence ambient O3 levels in different ways.

For example, photons from sunlight might cause nitrogen dioxide (NO2) to split into nitrogen

oxide (NO) and a free oxygen molecule (O). The free O can then bind with oxygen (O2) to form

ozone (O3). Depending on atmospheric conditions, this reaction can operate in reverse as well,

where NO removes an oxygen molecule from O3 (a process known as “titration”) resulting in the

destruction of ozone and the formation of NO2 and O2.

Given the scientific link between combustion engines and the pollutants considered in this

analysis, we anticipate that automobile use and traffic levels will impact ambient air pollution

through three main channels. First and most obvious is that a greater number of cars on the freeway

at any given time, traveling at any given speed, results in a greater amount of pollution. Second,

traffic congestion can increase the amount of pollution each individual car creates. Efficiency of

automobile combustion is directly related to average travel speed and continuity of driving (Davis

and Diegel (2007)). Engines have an optimal revolutions per minute (RPM) range in which the

12http://www.epa.gov/oms/consumer/03-co.pdf.
13The terms “primary” and “secondary” pollutant are used to distinguish between pollutants that are emitted directly

into the air (primary) and pollutants that are not themselves emitted into the air but are formed by reactions between
emitted pollutants (secondary).
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maximum amount of power is obtained for any given amount of fuel. “Stop-and-go” traffic means

fluctuations in the engine revolutions per minute, and less time within the optimal RPM range.14

Finally, traffic congestion can decrease the average speed of each vehicle on the road. At a given

RPM (and engine efficiency), a slower speed implies more time on the road to travel the same

distance, and thus more fuel burnt (and emissions created) for each mile traveled.

We note that, despite the known scientific relationship between traffic and pollution, the cor-

relations in reality can be somewhat more complicated. Most cars are actually most efficient at

RPMs that correspond to speeds of 45-60 MPH (Davis and Diegel (2007)). If unhindered traffic

flow is moving at speeds above the range of highest efficiency, mild amounts of traffic that slightly

lower traveling speeds can actually increase engine efficiency and decrease emissions.

3.2 Pollution, Weather, and Mortality

Research has established a definite link between pollution exposure and compromised health; the

World Health Organization (WHO) Regional Office for Europe has comprised a series of over

300 relevant studies addressing the health impacts of criteria pollutants. However, the mechanism

through which pollution impacts health and mortality remains uncertain. Pollutants may directly

impact vital organs, or indirectly cause trauma. Carbon monoxide is known to bind to hemoglobin

in blood, decreasing the transmission of oxygen in the bloodstream, which in turn may lower

oxygen supplied to vital organs. High levels of carbon monoxide have been linked to heart and

respiratory problems and, in cases of very high exposure, death. The impacts of particulate matter

vary based on the size of the particulates. Matter in the range of 10 micrometers irritates the lung

tissue, lowers lung capacity and hinders long term-lung development. Smaller particulate matter

can be absorbed through the lung tissue, causing damage on the cellular level. Ozone is a known

lung irritant, has been associated with lowered lung capacity, and can exacerbate existing prior

heart problems as well as lung problems such as asthma or allergies.

Prior work has found strong ties between traffic pollution and infant health. Examples include

the impact of traffic pollution on childhood asthma hospital admittance (Friedman et al. (2001);

Neidell (2004)), preterm birth (Ponce et al. (2005)), childhood lung development (Gauderman

et al. (2007)), children’s lung functionality (Brunekreef et al. (1997)), children’s respiratory devel-

14RPM variation is also a major factor determining the difference between automobile fuel efficiency in freeway vs.
city driving.
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opment (Brauer et al. (2007)), and birth weight and premature birth (Currie and Walker (2011)). In

this paper we provide the first analysis of the impacts of traffic pollution on infant mortality rates.

In the process of exploring the relationship between traffic and infant mortality, we also explore

the direct relationship between traffic and ambient pollution. As a source of identification, we take

advantage of the different impacts traffic has on pollution based on local weather conditions. For

example, traffic will only result in the formation of ground-level ozone as a result of an atmospheric

chemical reaction, such as the combination of nitrogen dioxide and surrounding oxygen molecules,

and this photochemical reaction cannot occur without sunlight.15 While ozone levels are highest on

hot, sunny days, particulate matter and carbon monoxides levels are often higher during the colder

winter months. This is partially due to temperature inversion, an atmospheric condition caused by

differences in upper and ground-level air temperatures. Temperature inversion results when a layer

of warmer air settles over a layer of colder air.16 The warm air layer prevents ground-level air from

circulating, and the stagnant air creates a buildup of ground-level pollution. Temperature inversion

is particularly problematic in valley areas, as surrounding mountains serve as “containment” for

the inversion weather system, making it even harder for the air to circulate.

Humidity, wind, rain and fog may also influence ambient pollution levels. Carbon monoxide,

for example, has an oxidation rate which has been found to change with humidity (Lee et al.

(1995)). Higher wind speeds allow air to better circulate and pollutants to disperse or increase

atmospheric chemical reactions, while rain can decrease both gaseous pollutants and particulate

matter through a combination of absorption and water entrapment (for a theoretical analysis of

this issue as well as a discussion of empirical findings, see Shukla et al. (2008)) and sometimes

increase particulate matter by placing particles onto roadways to then be kicked up by automobile

tires when conditions dry up.

As a consequence we control for a rich a set of weather variables in our first stage. A benefit

of such weather/pollution relationships is that interactions between traffic and weather allow us

to better identify conditions that are more conducive to traffic causing higher levels of specific

pollutants. For example, high traffic levels during hot, windy days will create different amounts

of different pollutants than high traffic levels on cold days with stagnant air (see Section 5.2).

Including these weather interaction variables allows us to simultaneously instrument for all three

pollutants of interest despite the limited number of traffic variables.

15Ultraviolet light is required in order for oxygen molecules to be separated from nitrogen dioxide and recombined
into O3.

16Such atmospheric conditions are often associated with movements of air pressure systems.
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Weather controls are also important for our second stage analysis. Previous work finds a rela-

tionship between weather and heightened mortality rates. For example, Deschênes and Greenstone

(2011) find increased temperatures are associated with higher levels of infant mortality. Barreca

(2008) finds similar evidence suggesting both temperature and humidity can have adverse health

effects. Other research suggests that failing to control for weather conditions can bias the esti-

mated relationship between ambient pollution and mortality, as extreme pollution events are often

strongly correlated with extreme weather events (Samet et al. (1998)). To account for potential

nonlinear relationships between weather and both pollution and mortality, we allow for flexible

polynomials in all of our weather variables in both stages of our analysis.

4 Empirical Methodology

Our conceptual model has an infant week of life as the unit of observation, and the key parameter

of interest is the effect of local pollution on the hazard rate of death. We control for a rich set

of geographic and time fixed effects, as well as (somewhat aggregated) individual level controls.

In order to better obtain plausibly exogenous variation in pollution, we use unusual variation in

the road density of automobiles, and employ two underlying methodological approaches: panel

fixed effects and instrumental variables. Although these are both conceptually straightforward

research designs, several features of our data present complications. In this section we discuss

these complications and our approaches to resolve them.

4.1 Mortality Hazards, LPMs, and Fixed Effects Models

Our main specification for the hazard model is a discrete-time hazard, with the unit of observation

being a person-week. The outcome of interest is whether or not said person died in that week.

Time since birth is the key “hazard time” element determining mortality risk. We follow CN by

controlling for the baseline hazard by including a flexible spline in age in weeks (with knots at 1, 2,

4, 8, 12, 20, and 32 weeks), and implementing this model as a linear probability model (LPM). We

prefer the LPM to a logit or probit model as it aids with computational implementation (caused by a

large number of time and region fixed effects), as well as eases implementation of the instrumental

variables specification. We have also allowed for an even more flexible age impact by using fixed

effects for each week of life. Results are quantitatively similar but are substantially more taxing in

estimation, so our preferred specification uses the spline form.
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Given the large number of births, and that most infants survive 52 weeks before leaving the

sample, this method results in a computationally taxing number of observations. The problem is

compounded with many control variables and fixed effects. CN tackle this problem by implement-

ing a “case-control” sampling methodology, which approximates the hazard but greatly reduces the

computational burden. We adopt an alternative simplification that enables us to use information

from all observations. We collapse our birth data into cells prior to expanding into the person-

week frame.17 We first collapse all observations to mother zip code by birth week by total weeks

survived cells. For example, one collapsed cell would be all births in zip code Z born in week

w that lived for 52 weeks. For individual mother (and child)-level covariates we calculate the

mean for each cell. We then expand observations to the cell-week level. In all regressions, we use

frequency weighting to approximate the uncollapsed model. We lose little variation here, as pollu-

tion, traffic and weather are all observed at the mother zip by week level. This greatly reduces the

computational burden for estimation. For example, in our preferred IV estimates the number of ob-

servations decreases from over 75 million to approximately 9 million. In a few sample regressions

we obtained extremely similar results using the full individual-level data.

Following CN we include a set of geographic fixed effects (at the zip code level) and flexible

time effects allowing each month in time a different baseline impact (e.g., January 2004 is allowed

to vary from January 2005). More specifically, in our preferred specification we include zip code

by-month-by-year fixed effects to flexibly control for trends within each zip code (e.g., seasonal

and long-run effects). Given our use of the discrete-time hazard model, there are multiple possible

definitions of both “month” and “year.” The zip-specific time fixed effect could refer to the time of

birth, in which case it would be fixed across event weeks. Or they could refer to time of observation,

which allows it to vary across event weeks. Our preferred specification uses the month and year

of the event week to generate the fixed effects. This is largely driven by the first stage, where we

believe such fixed effects help better identify the effects of weekly traffic variation on pollution.

We also show that results are similar when using the month and year of birth or, in the more

extreme case, both. In all regressions we include rich controls for weather (cubic functions of all

weather variables discussed in Section 2), as well as individual-level controls (collapsed to cell

level means as described above) for child’s gender, indicator variables for low birth weight and

premature birth, and maternal age, education and race, and public insurance status for delivery. In

17We have also used the case-control methodology outlined in CN, and have found qualitatively similar results.
Our preferred method uses all of the data, and avoids a problem with case control results — they can be sensitive to
changes in the size of the control sample chosen.
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order to control for the possible neonatal impacts of mother pollution exposure, we follow CN and

include average trimester pollution exposure as well.18 Note that we do not attempt to instrument

for prenatal pollution exposure levels.

Our conceptual baseline OLS estimating equation is:

Morti,z,a,m,y,w = αz,m,y + βPollutionz,w + φTrimesteri + δXi + γZz,b,y + splinea + εi,z,a,m,y,w,

(4)

where i indicates individual child, z is zip code, a is age in weeks, m is month (Jan-Dec), y is

year, and w is the current week (running from 1-260 in our sample, representing weeks since Dec

31, 2001). αz,m,y is the zip-by-month-by-year fixed effect, Xi are individual level controls (which

do not vary by week of life), and Zz,w are zip code-week level weather controls. Trimester is a

vector of average pollution levels for the first, second, and third trimesters of gestation individually.

Although we present this as if there were just one type of pollution, in our preferred models we

allow for three types to enter simultaneously.

4.2 Instrumental Variables

For our IV specifications, we model pollution as depending on zip code traffic as discussed in

Section 3. The key exclusion restriction needed for traffic to be a good instrument is that (week-to-

week) fluctuations in traffic do not directly impact infant mortality, and that these traffic variations

do not result from something that directly impacts mortality. Since our IV models continue to

control for the fixed effects of the OLS specification, we believe that this is a plausible assumption.

As an additional precaution, we have used the cause of death information in the birth cohort files

to omit deaths directly attributed to automobile trauma as noted in Section 2. A remaining concern

is that automobiles emit other pollutants besides those that we observe. For example, automobile

fuel combustion creates carbon dioxide, volatile organic compounds (which contribute to both

particulate matter and ozone formation), nitrogen oxides (also related to ozone), and benzene.

These pollutants may be impacting mortality, and due to likely correlation with our measured

pollutants, effects may be picked up by one of the three pollutions for which we control. Our

results should be interpreted in this light.

18Trimester pollution exposure is approximated by averaging zip code level pollution in weeks 1-12 before birth,
13-24 before birth, and 25-36 before birth for trimesters 1, 2, and 3, respectively.
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A key concern related to the exclusion restriction assumption has to do with our use of weather.

Stormy weather, for example, can slow down traffic and also directly impacts mortality and ambi-

ent pollution (see Section 3). For this reason, it is important that we control for weather flexibly.

For each of our six weekly weather variables (rainfall, maximum daily temperature, average daily

wind speed, specific humidity, days with rain, and days with fog), we include up to a third-order

polynomial in our preferred specifications.

Our primary instrument is zip-code level traffic flow interacted with each of our weather vari-

ables. This is motivated by the chemical interactions between automobile emissions and weather,

discussed in Section 3. Specifically, we interact the traffic variables with the linear values of all

the weather variables within the model. This is designed to capture (for example) the fact that

emissions are less likely to stay concentrated in the atmosphere when there is strong wind or rain.

In all models, we construct estimated standard errors allowing for clustering at the zip code level.

5 Results

We begin by first replicating the results found by CN using their empirical model and time period,

but with the alternate model specification of the collapsed-cell hazard as discussed in Section 4.

We then show how these results change with the addition of (a) different timing fixed effects

specifications, (b) more expansive weather controls, and (c) more flexible weather controls. We

next consider how similar models perform during the 2002-2007 period of substantially lower

ambient pollution levels. Next, we illustrate the explanatory power of traffic and traffic interacted

with weather variables in predicting pollution levels. Using this relationship as the first stage in

an instrumental variables model, we then estimate the effect of pollution on infant health, for the

whole population as well as subgroups of interest. In all regressions, the term “observations” refers

to the number of expanded hazard weeks represented by the weighted model described in Section

4. The number of births used in each case is listed in the table notes. Finally, we present the impacts

of traffic on infant health, directly, through a graphical analogue to the reduced form regression.

5.1 OLS/Fixed effects results

The first column of Table 3 uses an empirical model and timeframe that is largely similar to that

used in the preferred model in CN (panel four of Table III in their paper), with two differences.
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First, our data do not report mother’s marital status. Second, we use the collapsed hazard model

approach as described in Section 4. The model includes fixed effects for the month by year of

birth interacted with mother’s zip code fixed effects, a spline in the child’s age, cell level averages

of indicators for child’s sex, mother’s age, race, and education, the cell level variable for whether

public insurance was used for the delivery, the cell level average for being of low birth weight

(below 2500 grams), and the cell level average for being classified as premature (more than 3

weeks early). We multiply all coefficients by 1,000 for ease of reading, so coefficients should be

interpreted as 1,000 times the change in the weekly hazard associated with a marginal change in

the covariate.

For example, the coefficient on CO in column 1 of Table 3 implies that a 1 unit increase in

the weekly CO level is associated with a 0.0000033 percentage point increase in the probability of

death in that specific week. In order to compare our findings to those of CN, who report impacts in

terms of increased deaths per 100,000 live births, we must translate our marginal effects. To do so,

we multiply the estimated impact on the hazard rate by 52 to consider the full exposure probability

in the first year of life. That is, if the additional hazard in any given week (after controlling for

age effects and all other covariates) is β, then the total additional hazard for an infant that lives 52

weeks is 52 · β. This gives us the marginal effect on the probability of death in the first year of

life. Multiplying this probability by 100,000 gives the approximate number of additional deaths as

calculated in CN.

Column 1 of Table 3 shows that our results largely replicate theirs. CN find that a one-unit

decrease in carbon monoxide saves 16.5 infant lives per 100,000 births; we find that it saves 17.1

lives. In both cases, neither PM10 nor ozone have a statistically significant impact on the weekly

hazard rate (our coefficient on ozone is only weakly significant, is small in magnitude, and in the

counterintuitive direction — we note that CN find negative results for ozone as well, though theirs

are not marginally significant).

In column 2 we change the definition of the key time dimension for our fixed effects. In this

panel define the fixed effects based on month-year of period alive and at risk to die, rather than of

month-year of Birth. Note that the use of a different fixed effects specification results in a slightly

different sample size, as singleton observations within fixed effects cells occur at different rates.

An in column 1, our fixed effects are defined at the zip-by-month-year level. Results are largely

similar to column 1, though slightly larger for CO and ozone is no longer marginally significant.

Finally, in column 3 we use all sets of fixed effects, or zip-by-month-of-birth-by-year-of-birth-by-
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month-of-life-by-year-of-life. Results are substantially larger for CO and unchanged for PM10 and

ozone — a one-unit change in CO now causes an increase of 25 deaths per 100,000 live births. As

a point of comparison, we also include the marginal impacts of an increase of a within-zip code

standard deviation and a between-zip code standard deviation.

Next we examine the robustness of these results to adding more weather control variables.

These variables may be correlated with infant health, and are conceptually important control vari-

ables in our instrumental variables model. CN include maximum weekly temperature and weekly

rain totals. Column 1 of Table 4 is again our replication of the CN results using our estimation

method. In column 2, we add linear controls in the additional weather variables of specific hu-

midity, windspeed, days with rain, and days with fog. While the coefficient has decreased by

approximately 33%, it remains marginally significant. Addition of our higher order (up to cubic)

terms in all weather variables (column 3) leaves findings largely unchanged.

Overall, we interpret the findings in Tables 3 and 4 as confirming that our methodological

approach can replicate the initial findings in CN. Our findings also suggest that the timeframe

choice of fixed effects is relatively inconsequential. However, the relationship between certain

ambient weather variables and pollution may be a potential source of bias in estimating the effects

of pollution on health factors.

We next consider the time period from 2002 to 2007. In this period average CO levels are 40%

below those from 1989 to 2000, average levels of PM10 are 5 percent lower, and O3 levels are

3 percent lower. Results are presented in column 1 of Table 5. This specification includes zip-

by-event time fixed effects and cubics in all weather terms. Overall, our estimates are consistent

with those from the earlier period, but are estimated with greater noise. As such we are unable

to rule out zero effects. The point estimates, however, imply similar conclusions — CO is most

correlated with infant mortality, and PM10 and O3 less so. A one unit decrease in CO saves

16.37 lives, an estimate surprisingly close to the CN result given the substantially lower CO levels

in our time period. The comparison across the two time periods suggests a potentially concave

damage function for CO’s impact on infants. However, our estimates have large standard errors

and we cannot reject zero effect in the modern timeframe. Note the difference in standard deviation

impact numbers, as a one-unit change in CO at today’s lower levels represents a substantially

greater relative change.
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5.2 First stage: Traffic and pollution

Our first stage model utilizes traffic and traffic interacted with linear and quadratic terms in weather

variables as the main instruments. As such the estimated marginal effects are difficult to interpret.

Instead, to give a sense of the first stage results and the intuition behind the interactions with

weather, we present a graphical summary. The first stage model yields predictions of traffic’s

impact on each pollutant, and this impact varies with weather conditions. This variation implies a

distribution of the derivative of each pollutant with respect to our traffic measure, since the different

observations in our data experience different weather.

To gain further insight into whether our measure of traffic correlates with pollution in ways that

make sense, we stratify our “first stage” estimates based on weather. We choose example splits that

we think (based on the atmospheric chemistry) should result in a clear distinction between con-

ditions where traffic should have greater impact on pollution, and conditions where traffic should

have less of an impact on pollution.

Figure 1 shows that traffic typically increases CO, and a majority of the distribution is positive.

However, the magnitude of the average impact is low, and a large portion of the distribution is

negative. We are hesitant to draw too much inference from the sign of these effects, however, due

to the presence of our zip-by-month-by-year fixed effects, which make the marginal effects more

difficult to interpret. More important to our identification strategy is the use of weather interactions

and how changes in weather patterns shift the distributions in intuitive ways. We plot the marginal

effect distribution across different weather conditions, splitting results by particularly “low” condi-

tion days (below the 25th percentile for that particular weather variable) and “high” condition days

(above the 75th percentile). For example, graph (a) of Figure 4 suggests that increases in traffic

have less of an impact on CO when the number of days with rain is above the 75th percentile, and

graph (c) suggests slightly more of an effect when weekly humidity is above the 75th percentile.

Figure 2 plots the distribution of the derivative of PM10 with respect to traffic. Nearly the entire

distribution is positive. We also see intuitive shifts in the distribution with changes in weather

conditions. The effect of rain and humidity on the relationship between PM10 and traffic contrasts

to that of CO. Rainfall does not appear to influence the mean relationship between traffic and PM10

levels though it does impact the overall distribution shown in graph (b) of Figure 4, and humidity

greatly increases this relationship for PM10.

Figure 3 plots the distribution of the derivative of weekly ozone levels with respect to traffic.
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As with CO a large fraction of the derivatives are negative (58 percent). This is not surprising in

the case of ozone, since traffic generated nitrogen oxides and VOCs are components in both the

formation and titration of ground-level ozone (see Section 3). Graph (e) of Figure 4 shows that

higher wind levels result in higher ozone levels, possibly due to greater circulation of chemicals

in the air, providing more opportunities for chemical reactions, or because higher wind levels

mean clouds move more quickly and sunlight is allowed in more frequently. Graph (f), however,

shows that high winds result in lower PM10 values as the wind keeps air cycling and prevents the

temperature inversion atmospheres that favor higher PM10 levels.

In summary, the marginal impact of additional traffic varies by ambient weather conditions,

and varies differently by pollutant. This variation provides us with additional first stage power.

Additionally, it offers a means by which to separately identify the effect of each pollutant on infant

mortality in the second stage.

5.3 Instrumental variables estimation

Our main instrumental variables estimates are reported in Tables 5. For all IV regressions, first-

stage F statistics are included below reported coefficients, as are marginal effects. As noted above,

our instrumentation strategy uses interactions of traffic and ambient weather conditions, and use

fixed effects for mother’s zip by month of event and year of event. While the year of birth is likely

to affect mortality by capturing unobserved year-specific variables during pregnancy and the first

portion of life, we believe that unobservable variables during the current month and year of life are

also likely to be important. PM10 is the only pollutant that is statistically significant, and remains

so when including all three pollutants simultaneously. The coefficients suggest that a one-unit

decrease in PM10 is associated with approximately 18 fewer deaths per 100,000 live births, while

a within-zip standard deviation in traffic is associated with 233 additional deaths.

In considering the magnitude of these effects, it is helpful to refer to prior findings on particulate

matter and infant mortality rates. For example, Chay and Greenstone (2003b) find that a one unit

drop in total suspended particulates (TSPs) resulted in a drop of 4-8 infant deaths per 100,000 live

births, while Chay and Greenstone (2003a) found an effect of around 7-13 infant deaths per unit.

Both analysis used TSPs, which contain both PM10 and larger particulates not included in the

PM10 specification. While no direct conversion metric exists, the The World Bank Group note a

commonly used conversion metric between the two measures is PM10 = 0.55 · TSP (The World
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Bank Group (1999)). Using that conversion metric, the Chay and Greenstone (2003a) results

suggests marginal impacts of 7-15 and 13-23 additional deaths per unit increase of PM10. Our

results fall squarely within these estimates. However, we note those were based on yearly averages,

which no doubt included both substantially higher and lower weekly values.

5.4 Robustness Checks and Extensions

We first examine the robustness of our results to the time definitions of the fixed effects. In Table

6, we show that results are largely consistent across fixed effects specifications, though results are

weaker when we do not include event month by event year effects. This suggests event time fixed

effects are important in identifying the true effect of traffic on pollution.

We also examine the sensitivity of our results to the specification of the weather control vari-

ables. In panel B of Table 6, we show that our results are robust to all polynomial orders from

linear to through quintic.

One of the benefits of using interactions between weather and traffic as instrumental variables

is the ability to jointly identify the impacts of three separate pollutants despite only having one

measure of traffic. However, the use of multiple instruments raises the concern of the true source

of identification. Are our results a product of simply using enough instruments to get a statistically

significant result? Or are results being driven by the inclusion of a particular weather effect alone?

Both of these issues are of concern. To address this, we repeat our main IV analysis but vary the

weather interactions included in the first stage. Results are shown in Table 7. As we begin with

fewer than three instruments, we cannot estimate the simultaneous pollutant model, so we instead

conduct all analysis in a single-pollutant framework.

Column 1 shows results from using only traffic as an instrument with no additional weather

interactions. Column 2 adds an interaction with temperature, column three adds an additional

interaction with humidity, and so on. The lower panel indicates which weather interactions are

included for each column. By column 7, the regressions are equivalent to columns 2, 3, and 4 in

Table 5. Results for both carbon monoxide and ozone are never statistically significant at conven-

tional levels and shift between being positive and negative. The effects for PM10, however, are

always positive. And while the estimates using only traffic as an instrument are not statistically

significant, they are within a single standard error of the results in the most saturated model. Look-

ing across all specifications, it does not appear that the addition of any single pollutant explains the
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size or magnitude of our results. Results become much more precisely estimated with the addition

of humidity to the interaction set, suggesting there may be a strong link between ambient humidity,

traffic, and pollution.

To summarize, our modern OLS results are similar in magnitude to those found during the

1989-2000 period, though the standard errors are too large to reject zero effects for any pollutants.

Within the IV models we find a robust relationship between infant health and particulate matter

levels, but do not find evidence that carbon monoxide and ground-level ozone adversely impacts

infant mortality. The findings with PM10 do not appear to be driven by the use of a large number

of instruments.

We next consider how the impacts of pollution might vary across different subgroups. We

consider effects separately for blacks, births covered by Medicaid, births to high school dropouts,

and premature infants. Results are shown in Table 8. For all subgroups, effects are larger than

the average effect in Table 5. The effect for blacks (column 1), while almost three times the mean

impact, is not statistically significant, possibly due to the much smaller sample; only around 6%

of observed births during the 2002-2007 period are to black mothers. Effects for births funded by

Medicaid and births to high school dropouts are approximately 25% and 60% larger than mean

effects, respectively. Most puzzling, however, is the result for premature infants. Estimated effects

of PM10 are over 10 times that for the average population. However, effects for ozone are similarly

large and have a counterintuitive negative sign. This could be a product of toxicity of ozone

component pollutants. For example, higher ozone levels are likely correlated with lower nitrogen

oxide levels. This could also be a byproduct of the small sample chosen, where fewer than 5% of

births are premature. Another possibility is the impact of prenatal pollution exposure. Premature

infants may be premature due to higher pollution levels during gestation, and if pollution is strongly

correlated over short periods of time that could complicate our estimation. This is particularly

important as premature infants that die within a year do so quickly, with approximately 45% dying

in the first week of life and 60% of deaths occurring in the first two weeks of life (versus 30%

and 43%, respectively, for the full sample). Regardless of the reasoning, the exceptionally large

coefficient on PM10 and the negative, statistically significant sign on ozone make us wary of

attempting to interpret the findings for prematurely born infants.
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5.5 Reduced form results

As with the first stage, the interaction of traffic with weather conditions implies a distribution of

reduced form effects of traffic on infant mortality. An F-test of the joint statistical significance

suggests fairly precisely estimated effects (p-value of 0.008), but the interpretation of individual

coefficients, as in the case of the first stage estimates, is complex. However, the distribution of

impacts is intuitive. Figure 5 is a kernel density estimate of the joint effect of a marginal change

in traffic on infant mortality. We calculate this by regressing the weekly mortality rate on all co-

variates in our main specification as well as traffic and our interactions. For each observation, we

then generate an estimated marginal impact of traffic and mortality for that observation’s given

weather conditions, and then plot the density of those effects. To aid in interpretation, we plot the

percentage change in the infant mortality rate for a change in traffic equal to a within-zip code stan-

dard deviation. While the density shows some negative values, the majority of observations find

positive values with a mean of approximately 0.006. This suggests a standard deviation increase

in our weekly traffic measure raises the probability of an infant death in that week by approxi-

mately 0.0007 percentage points. Over a 52-week period, this translates to a 0.04 percentage point

increase, or a change of approximately 14% of the baseline.

We next investigate how the reduced form is affected by changes in weather conditions. This

is driven by two primary thought experiments. First, just as we expect the impact of traffic on

pollution to vary with ambient weather, we would also expect the reduced form impact of traffic

on mortality to vary with weather conditions. Second, as noted above weather itself has been

shown to have a substantial impact on mortality independent of traffic. Figure 6 plots the kernel

density estimates of the impact of traffic on mortality in various weather conditions (note again

we have dropped all deaths associated with auto trauma to insure that our results are not driven by

mortality in auto accidents caused by weather conditions). Panel A of Figure 6 shows the density

for all expanded births, and then separately for weeks with high rain and weeks with high fog

(where high is again defined as greater than the 75th percentile). Panel B again shows all expanded

births, along with weeks with high humidity, high temperature, and high wind.

Taken cumulatively, the graphs suggest that the reduced form is largest during humid weeks and

weeks with high fog. This is consistent with our results that traffic has a stronger effect on PM10

during such conditions, and PM10 has a stronger influence on infant mortality in our period of

analysis. When we compare the weeks with rain versus those without, we see only slightly higher

effects during rainy conditions. The effect of traffic on infant mortality subsides considerably
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during windy periods, possibly because high winds clear the air and prevent temperature inversion.

Finally, we find little variation by temperature.

We next analyze whether the reduced form relationship changes with demographics. We con-

tinue to use the average of one standard deviation in traffic within zip codes. Panel A of Figure 7

plots kernel density estimates of the reduced form across all observations, black mothers and His-

panic mothers. Panel B repeats all observations, and includes high school dropout mothers, births

covered by Medicaid, and premature births. The estimate is slightly larger for Hispanic mothers,

and effects for blacks are noisy and the mass is negative. As noted in Table 8, blacks make up a

small portion of the birth population and have a statistically insignificant second stage estimate as

well. Results appears slightly smaller for Medicaid patients, which is surprising given the larger

second stage effects found in Table 8. Effects for high school dropout mothers are much larger, and

largest is the effect for premature infants. The particularly wide distribution for premature infants

is interesting this may be a factor of very early births being treated in the hospital early on in life,

preventing the most extreme cases from being exposed to outdoor pollution levels.

In summary, the reduced form estimates suggest that shocks to traffic congestion result in in-

creases in weekly infant mortality rates. These effects are strongest during periods of high humidity

and high fog, and lowest during periods of high wind, suggesting conditions that favor high partic-

ulate matter levels are more likely to increase mortality rates. Effects are also largest for Hispanics,

premature infants, and infants born to mothers that did not finish high school. Effects for blacks

are particularly noisy, perhaps due to the small number of births.

6 Conclusions

We contribute to the existing literature on pollution and health by analyzing the impact of car-

bon monoxide, particulate matter, and ozone on infant health, as was done by Currie and Neidell

(2005). We first consider how their results vary with econometric specifications, and then illustrate

the importance of weather in the estimates of pollution’s impacts on health. This suggests that

weather may be of substantial importance in the estimation of pollution and health effects.

We next consider the impacts of the lower pollution levels seen in California today. We find

effects are similar in magnitude to those in the 1989-2000 period, though are no longer statistically

significant. There are a number of reasons to be concerned that OLS would yield inconsistent
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estimates of the impact of pollution on infant health. First, mothers may self-select into geographic

regions. Second, changes in local economic activity may also bias OLS estimates. Third, pollution

is likely measured with error. The majority of papers in this literature assign pollution levels to

a particular person, living in a particular geographic area (e.g., zip code or county), based on

pollution readings from pollution sensors in or near this geographic area. This introduces three

sources of measurement error. We instrument for pollution using weekly shocks to traffic and its

interactions with ambient weather conditions as a potential correction to these problems, and in

doing so consider a relationship between traffic congestion and infant mortality.

We find PM10 has a large and statistically significant effect on infant mortality, while there is

little stable evidence on the relationship of carbon monoxide or ozone infant health. Considering

the substantial decrease in ambient carbon monoxide levels in the past 15 years, this is not entirely

surprising. In our preferred specification, a one-unit decrease in PM10 (around 13% of a standard

deviation) saves roughly 18 lives per 100,000 births. This represents a decrease in the mortality

rate of around 6%. This is consistent with the findings of prior research on ambient particulate

matter, and suggests that even at today’s lower levels are substantial health gains to be made by

reducing both ambient pollution and traffic congestion.
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DESCHÊNES, O. AND M. GREENSTONE (2007): “The economic impacts of climate change: ev-

idence from agricultural output and random fluctuations in weather,” The American Economic

Review, 97, 354–385.

——— (2011): “Climate change, mortality, and adaptation: Evidence from annual fluctuations in

weather in the US,” Forthcoming in the American Economic Journal: Applied Economics.
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Table 2: Means for Infant Data Across Time Periods and Zip Code Samples

CN Zips KMS Zips
1989-2000 2002-2007 1989-2000 2002-2007

Infant Death 4.106 2.889 4.096 2.801
Male 0.514 0.513 0.514 0.513
Black 0.086 0.059 0.086 0.059
Asian 0.077 0.101 0.076 0.101
Hispanic 0.479 0.514 0.453 0.492
Other Race 0.055 0.07 0.054 0.07
Mother is HS Grad 0.665 0.709 0.681 0.722
Mother is College Grad 0.195 0.287 0.201 0.293
Twins 0.024 0.03 0.024 0.03
Triplets or More 0.001 0.001 0.001 0.001
Mother Age 19 - 25 0.323 0.277 0.32 0.275
Mother Age 26 - 30 0.284 0.268 0.286 0.269
Mother Age 31 - 35 0.219 0.258 0.221 0.261
Mother Age > 35 0.108 0.152 0.108 0.152
Medicaid 0.415 0.42 0.398 0.401
Care 1st Trimester 0.802 0.904 0.803 0.903
Low Birth Weight 0.062 0.067 0.062 0.066
Premature 0.047 0.046 0.046 0.045

Observations 3016910 1238500 3435346 1441112

Notes: Cells report unweighted averages of individual birth level data. Death is an indicator

variable, with means reported as deaths/1000 births. All other variables are indicator variables

with means reported as proportions. The CN zips cover zip codes for which pollution and birth

data exist from 1989-2000. The KMS zips cover zip codes for which pollution, birth data, and

traffic data exist from 2002-2007. These primarily cover the Sacramento Valley and Southern

California. Authors’ calculations from California linked Birth-Death Vital Statistics records. See

Section 2 for further detail.
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Table 3: OLS Estimates of Pollution on Infant Mortality (1989-2000) With Varied Temporal
Fixed Effects

(1) (2) (3)

Birth Month/Year Event Month/Year Both Sets of
Fixed Effects Fixed Effects Fixed Effects

Carbon Monoxide 0.0033∗∗∗ 0.0036∗∗ 0.0048∗∗∗

(0.0009) (0.0017) (0.0017)

Particulate Matter 0.0000 0.0000 0.0000
(0.0000) (0.0001) (0.0001)

Ozone -0.0001∗ 0.0000 0.0000
(0.0001) (0.0001) (0.0001)

Deaths per unit
Carbon Monoxide 17.10 18.83 25.02
Particulate Matter -0.23 -0.20 -0.23
Ozone -0.63 -0.03 -0.02

Deaths per within-zip std. dev.
Carbon Monoxide 21.08 23.20 30.84
Particulate Matter -4.24 -3.60 -4.16
Ozone -9.97 -0.50 -0.36

Deaths per between-zip std. dev.
Carbon Monoxide 10.83 11.92 15.84
Particulate Matter -2.13 -1.81 -2.08
Ozone -6.01 -0.30 -0.22

Observations 147,234,633 147,234,022 147,221,346

Notes: Each column is a separate regression. Regressions are based on a starting sample of

3,005,688 births, expanded to a discrete-time OLS (LPM) hazard model as described in Section 4.

Control variables include: a spline in age-in-weeks (hazard time); linear controls for max tempera-

ture and rainfall; average trimester pollution exposure; infant’s gender; low birthweight; premature

birth; public insurance status; mother’s age, education, and race; and zip-code-by-time fixed ef-

fects. The specification for the time-fixed effects varies across columns. The main coefficients and

standard errors are multiplied by 1000 for aid in reading. Deaths per unit translate the coefficients

into an increased number of infant deaths per 1000 live births associated with a 1-unit increase

in the pollutant over an entire year. Deaths per within-zip SD model the impact of a within-zip

increase in pollution (as calculated in Table 1), and similarly for Deaths per between-zip SD.
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Table 4: OLS Estimates of Pollution on Infant Mortality (1989-2000) With Varied Weather
Effects

(1) (2) (3)

Standard Expanded Higher Order
Weather Weather Weather

Carbon Monoxide 0.0033∗∗∗ 0.0022∗ 0.0020∗

(0.0009) (0.0011) (0.0012)

Particulate Matter 0.0000 0.0000 0.0000
(0.0000) (0.0001) (0.0001)

Ozone -0.0001∗ -0.0001 -0.0001
(0.0001) (0.0001) (0.0001)

Deaths per unit
Carbon Monoxide 17.10 11.24 10.46
Particulate Matter -0.23 -0.13 -0.13
Ozone -0.63 -0.39 -0.57

Deaths per within-zip std. dev.
Carbon Monoxide 21.08 13.85 12.89
Particulate Matter -4.24 -2.4 -2.35
Ozone -9.97 -6.17 -8.94

Deaths per between-zip std. dev.
Carbon Monoxide 10.83 7.11 6.62
Particulate Matter -2.13 -1.2 -1.18
Ozone -6.01 -3.72 -5.39

Observations 147,234,633 147,234,633 147,234,633

Notes: Regressions are based on a starting sample of 3,005,688 births, expanded to a discrete-

time hazard model as described in Section 4. Controls are similar to Table 3, but with expanded

weather controls, cubic polynomials in all weather variables, and event week fixed effects (see

Section 5).
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Table 5: OLS and IV Estimates of Pollution on Infant Mortality (2002-2007)

(1) (2) (3) (4) (5)

OLS IV IV IV IV

Carbon Monoxide 0.0031 0.0078 0.0155
(0.0039) (0.0268) (0.0277)

Particulate Matter -0.0001 0.0034∗∗∗ 0.0035∗∗∗

(0.0001) (0.0010) (0.0011)

Ozone -0.0001 0.0012 -0.0002
(0.0001) (0.0018) (0.0018)

First Stage F-Statistic
Carbon Monoxide — 96.57 — — 135.12
Particulate Matter — — 96.22 — 115.13
Ozone — — — 98.11 93.01

Deaths per unit
Carbon Monoxide 16.37 40.63 — — 80.48
Particulate Matter -0.45 — 17.58 — 18.02
Ozone -0.27 — — 6.45 -1.05

Deaths per within-zip std. dev.
Carbon Monoxide 8.58 21.29 — — 42.17
Particulate Matter -5.86 — 227.21 — 232.98
Ozone -3.4 — — 80.07 -12.99

Deaths per between-zip std. dev.
Carbon Monoxide 3.81 9.45 — — 18.72
Particulate Matter -3.49 — 135.34 — 138.77
Ozone -1.73 — — 40.67 -6.6

Observations 75,778,509 75,778,463 75,778,463 75,778,463 75,778,463

Notes: Regressions are based on a starting sample of 1,436,739 births, expanded to a discrete-

time hazard model as described in Section 4. Column 1 presents OLS results similar to the spec-

ification in Table 4, Column 3, but using 2002-2007 data and zip codes. Columns 2-5 present

IV models. The instrumental variables are traffic and traffic interacted with linear terms in all in-

cluded weather variables. Columns 2-4 include the pollution variables one at a time, and Column

5 includes them simultaneously. F-stats test the hypothesis that the instrumental variables have no

predictive power in the first stage. F-stats in Column 5 vary from individual regressions of columns

2-4 due to the simultaneous inclusion of trimester exposure variables as control variables for all

pollutants.
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Table 6: Variations on OLS and IV Specifications: Fixed Effects and Weather Order

(1) (2) (3) (4)

Panel A: Varied Fixed Effects Timing

OLS IV

Birth Month/Year Both Sets of Birth Month/Year Both Sets of
Fixed Effects Fixed Effects Fixed Effects Fixed Effects

Carbon Monoxide 0.0086 0.0067 -0.0051 0.0088
(0.0064) (0.0065) (0.0163) (0.0279)

Particulate Matter -0.0001 -0.0001 0.0021 0.0032∗∗∗

(0.0001) (0.0001) (0.0014) (0.0010)

Ozone 0.0001 0.0001 -0.0011 0.000
(0.0002) (0.0002) (0.0009) (0.0018)

Panel B: IV With Varied Weather Order

Linear Quadratic Quartic Quintic

Carbon Monoxide -0.0053 0.0083 0.0136 0.0121
(0.0258) (0.0261) (0.0277) (0.0278)

Particulate Matter 0.0029∗∗∗ 0.0033∗∗∗ 0.0031∗∗∗ 0.0027∗∗∗

(0.0010) (0.0010) (0.0010) (0.0010)

Ozone 0.000 -0.0002 0.0004 0.0009
(0.0013) (0.0017) (0.0019) (0.0019)

Notes: Regressions are based on a starting sample of 1,436,739 births, expanded to a discrete-

time hazard model as described in Section 4. The population coverage is the years 2002-2007 and

KMS zips. Specifications correspond to Columns 1 (OLS) and 5 (IV) of Table 5. In Panel A,

we vary the timing of the fixed effects. In Panel B, we vary the polynomial order of the weather

control variables.

34



T a
bl

e
7:

T
he

Im
pa

ct
of

A
dd

in
g

W
ea

th
er

In
te

ra
ct

io
ns

to
th

e
Fi

rs
tS

ta
ge

E
st

im
at

es

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

C
ar

bo
n

M
on

ox
id

e
0.

11
72

-0
.0

36
5

0.
00

55
0.

00
17

-0
.0

04
6

-0
.0

06
8

0.
00

78
(0

.1
81

2)
(0

.0
34

8)
(0

.0
29

4)
(0

.0
29

0)
(0

.0
28

4)
(0

.0
28

6)
(0

.0
26

8)

Fi
rs

tS
ta

ge
F-

St
at

is
tic

38
.7

5
20

3.
96

15
8.

47
14

8.
87

12
6.

55
10

4.
64

96
.5

7

Pa
rt

ic
ul

at
e

M
at

te
r

0.
00

24
0.

00
34

0.
00

47
∗∗

∗
0.

00
33

∗∗
∗

0.
00

35
∗∗

∗
0.

00
33

∗∗
∗

0.
00

34
∗∗

∗

(0
.0

03
6)

(0
.0

02
7)

(0
.0

01
8)

(0
.0

01
0)

(0
.0

01
0)

(0
.0

01
1)

(0
.0

01
0)

Fi
rs

tS
ta

ge
F-

St
at

is
tic

13
6.

27
98

.5
4

16
5.

37
13

0.
19

10
9.

89
10

7.
04

96
.2

2

O
zo

ne
-0

.0
16

3
0.

01
02

0.
00

41
0.

01
14

0.
00

47
∗

0.
00

04
0.

00
12

(0
.0

26
6)

(0
.0

11
2)

(0
.0

10
7)

(0
.0

08
6)

(0
.0

02
7)

(0
.0

01
8)

(0
.0

01
8)

Fi
rs

tS
ta

ge
F-

St
at

is
tic

2.
25

8.
46

6.
37

5.
6

73
.0

3
11

1.
82

98
.1

1

M
ax

Te
m

p
X

X
X

X
X

X
H

um
id

ity
X

X
X

X
X

W
in

ds
pe

ed
X

X
X

X
R

ai
nf

al
l

X
X

X
D

ay
s

w
ith

R
ai

n
X

X
D

ay
s

w
ith

Fo
g

X

N
ot

es
:

R
eg

re
ss

io
ns

ar
e

ba
se

d
on

a
st

ar
tin

g
sa

m
pl

e
of

1,
43

6,
73

9
bi

rt
hs

,e
xp

an
de

d
to

a
di

sc
re

te
-t

im
e

ha
za

rd
m

od
el

as
de

sc
ri

be
d

in

Se
ct

io
n

4.
E

ac
h

(r
ow

x
co

lu
m

n)
ce

ll
is

a
se

pa
ra

te
IV

re
gr

es
si

on
.

C
ol

um
n

7
pr

es
en

ts
re

su
lts

co
rr

es
po

nd
in

g
to

C
ol

um
ns

2-
4

of
Ta

bl
e

5.

C
ol

um
ns

1-
6

pr
es

en
tr

es
ul

ts
ba

se
d

on
m

or
e

pa
rs

im
on

io
us

in
st

ru
m

en
ts

et
s.

E
ac

h
co

lu
m

n
va

ri
es

w
hi

ch
w

ea
th

er
va

ri
ab

le
s

ar
e

in
te

ra
ct

ed

w
ith

tr
af

fic
to

cr
ea

te
in

st
ru

m
en

ta
lv

ar
ia

bl
es

.A
ll

co
lu

m
ns

co
nt

ro
lf

or
cu

bi
c

po
ly

no
m

ia
ls

in
al

lw
ea

th
er

va
ri

ab
le

s.

35



Table 8: IV Estimates of Pollution on Infant Mortality (2002-2007) by Subgroup

(1) (2) (3) (4)

Black Medicaid HS Dropouts Premature

Carbon Monoxide -0.1153 0.0038 0.0428 0.237
(0.1197) (0.0498) (0.0625) 0.3728

Particulate Matter 0.009 0.0044∗∗ 0.0055∗∗ 0.0553∗∗∗

(0.0058) (0.0017) (0.0023) 0.0157

Ozone 0.008 0.0049 0.0018 -0.0554∗∗

(0.0078) (0.0034) (0.0047) 0.0254

Deaths per unit
Carbon Monoxide -599.72 19.78 222.74 1232.37
Particulate Matter 46.76 22.89 28.56 287.40
Ozone 41.75 25.33 9.56 -288.21

Deaths per within-zip std. dev.
Carbon Monoxide -314.24 10.36 116.71 645.73
Particulate Matter 604.38 295.89 369.19 3714.82
Ozone 517.98 314.17 118.65 -3575.36

Deaths per between-zip std. dev.
Carbon Monoxide -139.48 4.60 51.81 286.63
Particulate Matter 359.99 176.24 219.90 2212.68
Ozone 263.10 159.58 60.27 -1816.02

Observations 4,443,436 30,380,047 21,069,088 3,258,606

Notes: Regressions are based on a starting sample of 84,298 births for blacks, 575,801 for

medicaid, 399,350 for lower education mothers, and 62,975 for premature, expanded to a discrete-

time hazard model as described in Section 4. The specifications correspond to Column 5 of Table

5.
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Figure 1: First Stage for Carbon Monoxide
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Notes: Kernel density of estimated impact of traffic on CO, based on the First Stage

model from Column 5 of Table 5. Each observation in the first stage has a predicted

impact of traffic on pollution, based on the particular weather conditions for that ob-

servation. The histogram above is the distribution of these impacts, using an Epinech-

nikov kernel and a bandwidth of 0.003.
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Figure 2: First Stage for Particulate Matter
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Notes: Kernel density of estimated impact of traffic on PM10, based on the First

Stage model from Column 5 of Table 5. Each observation in the first stage has a

predicted impact of traffic on pollution, based on the particular weather conditions for

that observation. The histogram above is the distribution of these impacts, using an

Epinechnikov kernel and a bandwidth of 0.075.
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Figure 3: First Stage for Ozone

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

D
e

n
s
it
y

−.004 −.002 0 .002 .004 .006
Derivative of O3 with Respect to Flow

Notes: Kernel density of estimated impact of traffic on PM10, based on the First

Stage model from Column 5 of Table 5. Each observation in the first stage has a

predicted impact of traffic on pollution, based on the particular weather conditions for

that observation. The histogram above is the distribution of these impacts, using an

Epinechnikov kernel and a bandwidth of 0.00005.
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Figure 4: The Varied Impact of Traffic on Pollution by Weather Conditions
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Notes: Kernel densities of first stage impacts based on subsets of data from Figures

1-3. Distributions include observations with weather values above the 75th percentile

(for high) and below the 25th percentile (for low) of all weather in the primary analysis.

See Section 5.2 and Section 2.
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Figure 5: Density of Reduced Form Impacts
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Notes: Kernel density of estimated impact of traffic on Infant Mortality, based on a re-

duced form model paralleling Column 5 of Table 5. Each observation in the first stage

has a predicted impact of traffic on mortality, based on the particular weather condi-

tions for that observation. The histogram above is the distribution of these impacts,

using an Epinechnikov kernel and a bandwidth of 0.00025.
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Figure 6: Reduced Form Density by Weather
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Notes: Kernel densities of reduced form impacts based on subsets of data from Figure

6. “High” weather values are classified as those above the 75th percentile for the

weather data used in the primary analysis. See Section 5.5 and Section 2 for further

details. All densities use an Epinechnikov kernel, with bandwidths of 0.003, 0.075,

and 0.00005 for CO, PM10, and O3, respectively.
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Figure 7: Reduced Form Density by Subgroups
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Notes: Kernel densities of reduced form impacts estimated on subsets of data. All

densities us an Epinechnikov kernel, and a bandwidth of 0.00025. Joint significance

p-values for the reduced form estimates are as follows: all (0.008), blacks (0.026), His-

panics (0.010), Medicaid (0.081), high-school dropout mothers (0.015), and premature

(0.000). See Section 5.5 and Section 2 for further details.
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