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Abstract

Many economists and policy makers have long favored the use of a price instrument to
control greenhouse gases because they are a stock pollutant and as such the marginal
benefit of abatement is relatively flat. While the early literature on the problem is
consistent with this view, the later literature is less categorical. It showed that the
choice between a price or quantity control depends, in part, upon the assumption
on the dynamic structure of cost uncertainty. Temporary shocks to abatement cost
favors the use of a price control, while permanent shocks favor a quantity control.
Unfortunately, the importance of this assumption to the optimal choice has not yet
received wide currency among economists. We analyze the problem in an alternative
setting and reproduce the result that temporary shocks favor use of a price control
while permanent shocks favor use of a quantity control. Our contribution is the
simplicity of the model and the accessibility of the results, which reinforce the critical
role played by the assumed structure of uncertainty.
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1 Introduction

Two classic alternatives for regulating stock pollutants, such as greenhouse gas emissions,

are a cap & trade system or a carbon tax. Economists refer to the former as a quantity

control and the latter as a price control. While a cap & trade system yields a price, this

is a secondary result of regulating the quantity. Correspondingly, a carbon tax effectively

reduces the quantity of emissions, but as a secondary result of setting a price. Under

idealized circumstances the two methods are equivalent. If the parameters of the underlying

economy are well known, then there is a simple duality in the problem and it doesn’t matter

whether it is the price or the quantity which is fixed directly.

Of course, circumstances are never ideal. Considering a static model of uncertainty about

the cost curve, Weitzman (1974) showed that a flat expected marginal benefit function,

relative to marginal cost, favours a price control, while a steep marginal benefit function

favours a quantity control. Intuitively, a flat marginal benefit function implies a constant

benefit per unit of pollution abated, suggesting that a tax could best correct the externality.

In contrast, a steep marginal benefit function implies a hazardous threshold that should

be avoided and that is efficiently enforced by a quantity control.

The early literature extends Weitzman’s static model to a long term horizon. This literature

emphasizes the fact that for a stock pollutant the marginal benefit function for abatement

within any single period is flat while the marginal cost function slopes sharply, so that

the Weitzman logic argues in favor of a price control within each period –see, for example,

Nordhaus (1994) (Ch. 8, fn. 4), Pizer (1999) and Hoel and Karp (2002). Although the choice

ultimately depends upon the empirical parameters of the problem, the stock pollutant

nature of greenhouse gases appeared to make the outcome obvious.

Later research on the dynamic problem pointed out that the early literature had made

a narrow assumption about the dynamic character of the uncertainty on cost through

time, and solved a more general case. This later literature solved a more general case and

showed that uncorrelated uncertainty on cost across periods (temporary uncertainty) led

to a preference for using a price control in each period, while correlated uncertainty on cost

(permanent uncertainty) led to a preference for using a quantity control –see, for example,

Newell and Pizer (2003) and Karp and Zhang (2005). Consequently, whether a price

control or a quantity control is preferred depends crucially on ones estimate of the degree

of correlation in costs across periods, together with the other parameters of the problem,

including the stock pollutant nature of greenhouse gases. Assessing the relative strength

2



of the different factors is more difficult. While the stock pollutant nature of greenhouse

gases clearly and dramatically flattens the marginal benefit function for emissions within

a single period, the correlation of costs across periods, depending upon how strong it is,

could operate on a comparable scale, making the choice between a quantity control or a

price control more contentious than previously understood.

The original claim from the early literature asserting that a price control is superior for

stock pollutants like greenhouse gases achieved wide currency among economists and policy

makers. The later revision, noting the important role of the assumption about the dynamics

of cost uncertainty, is less widely appreciated. For example, the Stern Review (2006) reports

that the stock pollutant character of the greenhouse gas problem unambiguously argues in

favor of a price control.

This paper attempts to address the lag in digesting the later research results by repro-

ducing the results in a slightly different model with some useful features. The model is

relatively simple, so that the optimal dynamic policy is easily derived and can be handily

simulated. The match between alternative extreme assumptions on the dynamic structure

on costs and the preference for either a price or cost control is stark, so that the underlying

relationship between the assumption and the result is highlighted. As always, reproducing

a fundamental result in a different context helps clarify the essential relationship between

the assumptions and the result.

The bottom line is that the early stock pollutant story oversimplifies the problem. In

imagining an extension of the Weitzman model from a single period to a multiple one, the

early stock pollutant story makes a strong implicit assumption that the relevant uncer-

tainty involves purely transitory shocks to the cost function. The logic is inconsistent with

uncertainty about permanent or even lasting shocks. When the shocks are permanent, the

stock pollutant problem looks exactly like the one period problem so that which form of

control is optimal – prices or quantities – is a difficult empirical problem. The fact that

greenhouse gases are a stock pollutant does not alter the situation at all if the important

cost uncertainties are about permanent shocks to the cost function.

In the next section of the paper, we neglect benefits and concentrate the analysis on the

cost-effectiveness problem. Assuming a given cap on aggregate emissions, we present a

model of dynamic abatement cost uncertainty which can be easily solved to yield the cost

minimizing emissions policy. The model can be calibrated to the extreme case in which all

cost uncertainty is temporary or to the other extreme case in which all cost uncertainty

is permanent. These are two extreme special cases of a more general specification used,
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for instance, in Karp and Zhang (2005), and correspond to the extreme special cases

of perfectly correlated or perfectly uncorrelated uncertainty specification. In the case of

permanent uncertainty, the cost minimizing emissions policy does not need to be contingent

on knowing the realization of the cost parameter at all. So no matter the information

available to the regulator about the realization of the cost parameter, the cost minimizing

emissions policy can be implemented using a quantity control. In this case, using a price

control will always be suboptimal (in cost-effective terms) with respect to minimizing the

cost of achieving a fixed level of emissions. This result is consistent with Newell and Pizer

(2003) and Karp and Zhang (2005) findings: the more correlated the shocks (ie. shocks have

a permanent impact), the more likely is the optimal policy to be a quantity control. The

case of temporary uncertainty, shows just the opposite, that the cost minimizing policy

does require adjusting the emissions level, and that this is equivalent to setting a price

schedule each period independent of the realization of the cost parameter. Therefore, a

regulator who is unable to observe the cost parameter for any period of time can more

closely attain the cost minimizing emissions policy by means of a price instrument as

opposed to a quantity instrument.

In the third section, we show that the insights from the model of cost effectiveness extend

to the fuller problem of weighing costs and benefits. We do this by solving a pair of two-

stage decision problems –one of completely temporary uncertainty and one of completely

permanent uncertainty. In the temporary uncertainty case, the original Weitzman model

together with the assumption that greenhouse gasses are a stock pollutant, combine to

suggest that a price control is the preferred regulatory action. In the permanent uncertainty

case, we show that the stock pollutant character of greenhouse gases is irrelevant to the

problem, and we are thrown back onto the original Weitzman problem where the preference

for price or quantity control is an empirical question.

2 Temporary&Permanent Shocks to Abatement Costs

We analyze emissions within a time horizon divided into N periods indexed by {i, i =

1, 2, . . . , N}. Emissions in each period are denoted qi, which is a control variable that can

be adjusted without constraint. Costs are incurred at a rate that is a function of emissions

and a cost parameter, θi,

ci(qi, θi) = eθi−qi.
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With this form, marginal costs are the negative of the cost,

∂ci(qi, θi)

∂qi

= −eθi−qi.

Higher emissions lower cost. Cutting emissions –abatement– increases cost. Increasing the

parameter θi shifts cost up while also steepening the cost curve, so that both the cost of

abatement and the marginal cost of abatement increases. We select this form for the cost

function because it allows us to conveniently handle a multi-period optimization problem

with discounting. It has the disadvantage that no matter how large the emissions, there

is some positive cost. Nevertheless, it is useful for unpacking the issues at hand in this

paper.

We evaluate two contrasting specifications of cost uncertainty. These are two extreme

special cases of a more general specification, and correspond to the extreme special cases

of perfectly correlated or perfectly uncorrelated uncertainty in the specification used in

Newell and Pizer (2003) and Karp and Zhang (2005). In the first specification, shocks

to the cost parameter are completely temporary or transitory. A shock affects the cost

parameter in that period, but has no impact on the cost parameter in any future period.

Under the second specification, shocks to the cost have a permanent impact. A shock

affects the cost parameter in that period, and the expected cost in all future periods is

incremented by the same amount, too.

The first specification of the cost parameter θi is:

θi = θ0 + iν + σεi, (1)

where θ0 is the starting cost parameter, ν is the constant expected growth rate in the

mean cost parameter, and εi are independent standard normal random variables, i.e. the

shocks to the cost parameter. This defines a process that is white noise around a linearly

increasing trend. It is comparable to a mean reverting process with full reversion to the

growing mean within the period.

The second specification of the cost parameter θi is:

θi = θi−1 + μ + σεi. (2)

5



where μ is the constant expected growth in the cost parameter. This process is a random

walk with trend. It is often said that the random walk has “infinite memory”. It is in

this sense that we say the shocks have a permanent impact on the cost parameter. A

very simple and intuitive presentation of the difference between temporary and permanent

uncertainty can be found in the Appendix.

We concentrate our attention on the cost-effectiveness solution neglecting benefits and

assuming a fixed target of aggregate emissions, q, over the N periods so that

N∑
i=1

qi ≤ q.

Considering the fixed aggregate emission constraint q, we ask what is the cost minimiz-

ing dynamic emissions policy in light of the stochastic evolution of the cost parameter.

Our purpose is to show how the degree to which uncertainty is temporary or permanent

shapes the cost minimizing emissions policy. To anticipate our results, we compare the

variability in quantity and price under the cost minimizing emissions policy. We show that

when uncertainty is temporary, and θi follows Equation (1), most of the period-by-period

variability in the cost parameter translates into variability in the quantity of emissions.

Price –actually, marginal cost– is relatively constant. We show that, in contrast, when

uncertainty is permanent, and θi follows Equation (2), all of the period-by-period variabil-

ity in the cost parameter translates into variability in the price of emissions. Quantity is

constant.

We solve for the cost minimizing policy using backward induction. We first set up the

general solution format we use, and then we solve each of the cases. A dynamic emissions

policy will set emissions in each period conditional on some function of past aggregate

emissions and on the current value of the cost parameter. We denote the remaining allowed

emissions as we arrive in period i by q̄i. Analytically, q̄i+1 = q̄i − qi for i = 1, . . . , N − 1.

The choice of emissions will also depend upon the level of the cost parameter, θi, and so

we write emissions as a function of these two parameters, qi(q̄i, θi). We denote the value

function in period i = 1, . . . , N, as Vi. Since the target of aggregate emissions is fixed,

in the final period when i = N, the value function is simply the total cost of remaining

emissions to abate:

VN(q̄N , qN , θN) ≡ c
(
qN(q̄N , θN), θN

)
.
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The cost minimizing emissions level, q∗N (q̄N , θN ), is the solution of the following problem

min
qN

VN(q̄N , qN , θN)

subject to the constraint
∑N

i=1 qi ≤ q. Given the cost function, the solution is trivially:

q∗N (q̄N , θN) = q̄N .

We denote the optimized value function as V ∗

N . It is a function of the remaining allowed

emissions coming into the period and the realized cost parameter in the period:

V ∗

N(q̄N , θN) ≡ VN

(
q̄N , q∗N(q̄N , θN ), θN

)

= c
(
q∗N (q̄N , θN), θN

)
= c(q̄N , θN).

We will also want to take note of the marginal cost of emissions under this optimal policy

which is:

p∗N (q̄N , θN) ≡ −∂c(q∗N (q̄N , θN ), θN)

∂qN

= c(q∗N (q̄N , θN ), θN).

where p∗N (q̄i, θi) represents the shadow price and is defined as the negative of marginal

cost. For convenience of comparison, we will generally focus on the log of the marginal

cost, ln(p∗i ) = θi − q∗i .

In earlier periods, when 1 ≤ i < N, the value function is the total cost of current period

emissions plus the discounted expectation of the value function in the subsequent period:

Vi

(
q̄i, qi, θi

)
≡ c

(
qi(q̄i, θi), θi

)
+ Eθi

[
V ∗

i+1

(
q̄i+1(q̄i, qi), θi+1

)]
.

The uncertainty about θi is resolved at the end of each period, therefore the expectation

operator is conditioned on the realisation of the cost parameter. The cost minimizing

emissions level q∗i (q̄i, θi) solves

min
qi

Vi(q̄i, qi, θi).
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The optimized value function is:

V ∗

i (q̄i, θi) ≡ Vi

(
q̄i, q

∗

i (q̄i, θi), θi

)
.

The marginal cost of emissions is:

p∗i (q̄i, θi) ≡ −∂c(q∗i (q̄i, θi), θi)

∂qi

= c(q∗i (q̄i, θi), θi).

The sequence of emissions functions, q∗i (q̄i, θi), form the cost minimizing dynamic emissions

policy. The sequence of price functions, p∗i (q̄i, θi), form the price corresponding to the cost

minimizing dynamic emissions policy.

We now turn to examining the solution to this problem under different circumstances. We

begin by solving the certainty case, since this provides useful intuition for the uncertainty

cases. We then solve the two contrasting uncertainty cases and show how the degree to

which uncertainty is temporary or permanent shapes the cost minimizing emission policy.

Certainty Case For the certainty case we have σ = 0, so that the dynamics of θi reduces

to

θi = θ0 + iν for i = 1, . . . , N.

As shown in the Appendix, the cost minimizing emissions path has a conveniently simple

general form:

q∗i =
1

N − i + 1
q̄i − 1

2
(N − i)(ν − r), (3)

and

V ∗

i (q̄i, θi) = ieθi−q∗i = ieθi−
1

N−i+1
q̄i+

1

2
(N−i)(ν−r). (4)

The log marginal cost of emissions is:

ln
(
p∗i (q̄i, θi)

)
= θi − q∗i (q̄i, θi) = θi − 1

N − i + 1
q̄i +

1

2
(N − i)(ν − r). (5)

The expressions in Equations (3)–(5) are contingent on whatever may be the endowment

of remaining allowed emissions coming into the period, q̄i, and they are expressed in terms
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of the remaining number of periods. Therefore, it is not immediately clear from Equation

(3) how the emissions in different periods compare to one another. In the certainty case,

we can readily translate back to an equation that describes emissions in different periods

as a function of the total allowed emissions, q̄, the total number of periods, N, the rate of

growth in the cost parameter, ν, and the discount rate, r :

q∗i (q̄, N, ν, r) =
1

N
q̄ + (i − N

2
)(ν − r). (6)

Transforming the price –the negative of the marginal cost– in log terms for the ease of

exposition, p∗i can be expressed as:

ln
(
p∗i (q̄, N, ν, r)

)
= θ0 − 1

N
q̄ +

N

2
(ν − r) + ir. (7)

To understand the optimal emissions policy in Equation (3) begin by assuming that

ν = r, so that the cost parameter is growing at a rate equal to the discount rate. In that

case, the optimal policy is to allocate to period i a pro rata share of the remaining allowed

emissions, 1
N−i+1

q̄i. Application of this policy to successive periods means that emissions

are equal in every period, q̄

N
. The (log) marginal cost of emissions rises, θ0 − q̄

N
+ ir, but at

a rate equal to the discount rate, so that the discounted marginal cost is equal across all

periods. When ν �= r the optimal policy is to adjust the pro-rate allocation in period i to

reflect the differential between the growth rate on the cost parameter and the discount rate.

The adjustment assures that emissions increase linearly through time at the rate ν − r,

as seen in Equation (6) and shown in Figure 1(a), so that the marginal cost of abatement

grows at the discount rate, r, as seen in Equation (7) and reported by Figure 1(b). If ν ≥ r,

and the underlying cost parameter is growing at a rate greater than the discount rate, then

this adjustment leads to reducing the rate of emissions now, in period i, increasing the

realized marginal cost today, so as to preserve allowed emissions for the later periods when

the cost parameter is higher, thus reducing the growth rate in the realized marginal cost

to equal the discount rate.

An important feature to take note of in the solution to this certainty case is that

the optimal emissions level, q∗i , is independent of the realized cost parameter, θi. The

cost minimizing emissions path is fully determined by (i) the quantity of emissions being

targeted relative to the time remaining, and (ii) the rate of growth in the cost parameter
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(a) Optimal emission policy q∗i .
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Certainty case: path of log marginal cost of emissions, ln(p∗
i )

(b) Log of marginal cost ln
(

∂c(q∗

i
,θi)

∂q∗

i

)
.

Figure 1: 5-year evolution of the cost minimizing dynamic emission policy, q∗i , (left) and

the log of marginal cost of emissions, ln
(

∂c(q∗i ,θi)

∂q∗i

)
, (right) for the certainty case. In this

example q̄ = 1, 000, θ0 = 5, ν = 0.1, σ = 0, r = 0.05, and the time step corresponds to a
week.

relative to the discount rate. The level of the cost parameter does not enter the equation.

If we change the current value of the cost parameter, we don’t change the cost minimizing

emissions policy!1 This fact significantly aids our solution of the cost minimizing policy

when the evolution of the cost parameter is uncertain, i.e., when we allow σ > 0, whether

for the case of temporary or permanent shocks.

Temporary Uncertainty Case As shown in the Appendix, the general form of the

optimal dynamic policy is:

q∗i =
1

N − i + 1
q̄i − 1

2
(N − i)(ν − r) − Aiσ

2 +
N − i

N − i + 1
σεi (8)

where

Ai =
N − i

N − i + 1

(
Ai+1 +

1

2(N − i)2

)
for i = 1, . . . , N − 1 and AN = 0

1Of course, if we were solving for the optimal emissions path, trading off costs and benefits, then we
would consider the level of the costs. But we would also be comparing the aggregate benefits over the full
horizon against the aggregate cost minimizing emissions policy over the full horizon.
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The general form of the optimized value function is:

V ∗

i (q̄i) = ieθi−q∗i = ieθi−
1

N−i+1
q̄i+Aiσ

2+ 1

2
(N−i)(ν−r)− N−i

N−i+1
σεi .

The log price is:

ln(p∗i ) = θ0 + iν − 1

N − i + 1
q̄i + Aiσ

2 +
1

2
(N − i)(ν − r) − 1

N − i + 1
σεi

The optimal emissions policy in Equation (8) is similar to the certainty case in two of

the components: the pro rata share of the remaining allowances, 1
N−i+1

q̄i, and the linear

growth factor, 1
2
(N − i)(ν − r). In addition, there is a deduction in the current emissions

level, Aiσ
2, which is tied to the overall volatility of emissions. This is an adjustment

to the inter-temporal allocation of emissions necessitated by the increasing variability of

emissions through time. Finally, there is the component of emissions that fluctuates with

the current realization of costs: N−i
N−i+1

σεi. If the remaining number of periods is large,

then the coefficient is close to 1, which means that all of the shock in the cost parameter

is absorbed in adjustment to the current level of emissions. This adjustment keeps the

current level of marginal cost approximately constant. As the remaining number of periods

declines, the coefficient on the quantity adjustment falls, so that only a portion of the shock

in the cost parameter is absorbed in adjustment to the current level of emissions. This is

because of the fixed aggregate emissions constraint. Any adjustment in the current level

of emissions must be compensated for with an opposite adjustment in emissions over all

of the remaining periods. The coefficient on the quantity adjustment, N−i
N−i+1

, results in all

periods sharing equally in the increased or decreased marginal cost so as to minimize the

aggregate cost impact. When there are fewer remaining periods to share the remaining

costs, a larger fraction must be absorbed in the current period. Consequently, as the

final period approaches, price reflects a larger and larger portion of the shock of the cost

parameter.

These points can be formalized by showing the formula for the variance of emissions

and of the log of price. The variance of emissions and log price one period ahead are:

V ari−1(q
∗

i ) =
N − i

N − i + 1
σ, and V ari−1(ln(p∗i )) =

1

N − i + 1
σ.
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The variance of the forecasted emissions and log price at any period, i, relative to the

starting period, i = 0, are:

V ar0(q
∗

i ) =

√√√√ i−1∑
h=1

( 1

N − h + 1

)2

+
( N − i

N − i + 1

)2

σ.

and

V ar0(ln(p∗i )) =

√√√√ i∑
h=1

( 1

N − h + 1

)2

σ.

Figure 2(a) shows a pair of one-standard deviation confidence bounds around the expected

path of the optimal quantity of emissions through time. Figure 2(b) shows a pair of one-

standard deviation confidence bounds around the expected path of the log of marginal cost

through time.
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Temporary shocks case: expected path of emissions, q∗
t  (dashed)

(a) Expected path and confidence bounds for q∗i .
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Temporary shocks case: expected log marginal cost of emissions, ln(p∗
i ) (dashed)

(b) Expected path and confidence bounds for the log

of marginal cost ln
(

∂c(q∗

i
,θi)

∂q∗

i

)
.

Figure 2: One-standard deviation confidence bounds around the expected path of the
optimal quantity of emissions, q∗i , (left) and around the expected path of the log of marginal

cost, ln
(

∂c(q∗i ,θi)

∂q∗i

)
, (right). In this example q̄ = 1, 000, θ0 = 5, ν = 0.1, σ = 0.2, r = 0.05,

5-year horizon, and the time step corresponds to a week.
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Permanent Uncertainty Case As shown in the Appendix, the general form of the

optimal dynamic policy is:

q∗i =
1

N − i + 1
q̄i − 1

2
(N − i)(μ − r), (9)

and

V ∗

i (q̄i, θi) = ieθi−q∗i = ieθi−
1

N−i+1
q̄i+

1

2
(N−i)(μ−r).

The log price is:

ln(p∗i ) = θi−1 + μ + σεi − 1

N − i + 1
q̄i +

1

2
(N − i)(μ − r) (10)

With a permanent shock, the cost in all periods is equally higher or lower, so that an

adjustment in the current period emissions will not help. In fact, the distribution of

emissions over time has no reason to change. The optimal emissions policy in Equation

(9) and represented in Figure 3(a) is identical to the certainty case. Emissions in each

period are a proportional fraction of the remaining available allowances as determined by

the remaining number of periods over which those allowances must be shared. Emissions

are adjusted for an allowance for growth in emissions to match the growth rate in the

cost parameter and are independent of the cost parameter itself. Emissions are entirely

unresponsive to shocks to the cost parameter. Since none of the cost uncertainty is absorbed

by the quantity of emissions, all of the cost uncertainty must be absorbed by the price as

shown in Equation (10).

These points can be formalized by showing the formula for the variance of emissions

and of the log of price. The variance of emissions and log price one period ahead are:

V ari−1(q
∗

i ) = 0, and V ari−1(ln(p∗i )) = σ.

The variance of the forecasted emissions and log price at any period, i, relative to the

starting period, i = 0, are:

V ar0(q
∗

i ) = 0, and V ar0(ln(p∗i )) =
√

iσ.
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(a) Optimal emission policy q∗i .
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cost of emissions ln
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)

Figure 3: 5-year evolution of the cost minimizing dynamic emission policy, q∗i , (left) and

the log of marginal cost of emissions, ln
(

∂c(q∗i ,θi)

∂q∗i

)
, (right) for the permanent shock case.

In this example q̄ = 1, 000, θ0 = 5, μ = 0.08, σ = 0.2, r = 0.05, the time step corresponds
to a week, and we consider a set of 50 sample paths.

Figure 3(a) shows the deterministic emissions policy in the face of permanent uncertainty

in the cost parameter. Figure 3(b) shows the log of the marginal price.

These two cases provide sharp insight into the different impact that uncertainty in cost

should have upon the cost minimizing emissions path depending upon whether it is a

temporary uncertainty or a permanent uncertainty. In the case of temporary uncertainty,

it is the quantity of emissions that absorbs shocks to the cost parameter, while the price of

emissions is relatively constant. In the case of permanent uncertainty, quantity is constant

and it is price that absorbs shocks to the cost parameter.

3 A Discrete Time Pair of Examples

In the previous section we fixed a cumulative emission target and solved for the cost-

effective emissions policy. We did not weigh the costs against the benefits. In particular,

in the case of permanent uncertainty, we showed that quantity was entirely invariant with

respect to shocks to the cost parameter. This would not be true if one were weighting costs

against benefits. Quantity would respond to shocks to the cost parameter, even if only to

a small degree. In this section we show how the intuition developed above nevertheless
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extendeds to the case of a complete weighing of costs against benefits.

A careful modeling of costs and benefits in a dynamic context like the one above is

complex. In order to simplify things and for the sake of illustration, we construct two

extremely stylized examples of temporary and permanent uncertainty within a simple two-

stage decision model of costs and benefits. We assume N discrete periods, with no dis-

counting. Emissions in each period are qi ≥ 0, with i = 1, . . . , N. Aggregate emissions are

Qn =
∑n

i=0 qi. The benefits function is a sort of “settling up” at the end based on the total

stock of emissions over the full N periods:

B(QN) = − b

2
Q2

N ,

where b > 0 is a parameter. Using the simple sum of emissions is equivalent to assuming

that there is no decay in the accumulated stock. Benefits would be maximized by setting

QN = 0. Higher emissions lower the benefits by progressively larger amounts: BQN
(0) = 0,

and ∀ QN > 0 we have BQN
(QN) = −b · QN < 0 and also BQNQN

(QN ) = −b < 0, where

Bx(x) and Bxx(x) are the first and the second derivative with respect to x. Costs are a

function of per period emissions, and controlling emissions is costly. Per period cost as a

function of emissions is written as,

C(qi, θi) =
c

2
(qi − q̄)2 − θi(qi − q̄), (11)

where c > 0 is a fixed parameter, q̄ is a reference level of emissions and θi is a non-

negative random variable.2 Costs in a given period are minimized at the adjusted reference

level q̄ + (θi/c). Emissions less than the adjusted reference level cost progressively more.

∀qi ≤ q̄ + (θi/c) we have Cqi
(qi, θi) = c(qi − q̄) − θi < 0 and Cqiqi

(qi, θi) = c > 0, where

Cx(x, y) and Cxx(x, y) are the first and the second derivative, respectively, with respect to

the first component.

We consider a discrete-time problem in which either a quantity or a price constraint

is established at the start of each period, then the uncertain parameter for that period is

realized, and then producers choose their action given the regulatory constraint. At the

end of the period the realization of that period’s parameter is common knowledge and

2The variable θi takes truly random variables only at time i = 1. For i = 2, ..., N, θi is either a given
value, θ, or equal to the value taken at time i = 1, θ̃1.
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a new quantity or price constraint must be set. We use the two-stage framework just

described to construct a pair of very special cases with a simple uncertainty structure that

dramatically reduces the complexity of the problem and yet nevertheless exposes the key

feature to which we wish to call attention. In both cases, all of the true uncertainty is

embedded in the value taken by the random cost parameter θi at the first period, i.e. θ̃1.

This is stage one. The first case captures the situation in which the shock in period 1 is

purely transitory, and the second case captures the situation in which the shock in period

1 is permanent. In the first case, the cost parameters for the remaining periods (stage two)

are known ex ante –i.e., not uncertain– and therefore independent of the realization θ̃1. We

assume the values are identical across years, θi = θ for i = 2, . . . , N. In the second case,

the cost parameters for the remaining periods (stage two) exactly equal the realization of

the first period cost parameter, so that resolution about the first period cost resolves all

the uncertainty about future costs, θi = θ̃1 for i = 2, . . . , N.

We solve the model by backward induction. In both cases, whatever uncertainty existed

has been resolved at the conclusion of the first stage. Therefore, the optimal level of

emissions in every future period can be calculated and readily enforced. Since all of the

remaining periods are identical in their cost functions, and since we have no discounting,

the optimal level of emissions will be identical across these subsequent periods, q∗i = q∗ for

i = 2, . . . , N. In the first case, these optimal outputs will be independent of the realization

of θi at time i = 1, while in the second case they will be a function of θ̃1. In both cases they

will be a function of the choice of first period emissions, q∗1. Given these optimal outputs,

we write the value function at the conclusion of period 1 as the (deterministic) sum of the

benefits and the remaining costs:

V (q∗1 , θ̃1) = max
q(q∗

1
,θ̃1)

B
(
q∗1 + (N − 1)q

)
− (N − 1)C(q, θ).

The first period problem can be modeled as the maximization of the expected difference

between this value function and the first period cost:

max
q1(·)

Eθ̃1

[
V (q1(·), θ̃1) − C(q1(·), θ̃1)

]
. (12)

We have written this generally, without being clear about whether the first period

output is a function of the cost parameter. In the first best (in the absence of uncertainty),

it clearly will be: q1 is a function of the realization θ̃1 such that the marginal value and
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marginal cost are equal for each realization of θi at i = 1. In the second best, à la Weitzman,

either (i) q1, or (ii) fix a price, p1, must be set before observing the realization θ̃1. In (i) the

output will not be a function of the cost parameter. In (ii) it will vary with the realization

θi at i = 1, but not necessarily according to the first best optimal schedule.

Weitzman asked which was better, the quantity or price control, in a setting with just

one period. We, too, focus on whether the quantity or price control is better for regulating

output in this one period. But the problem is posed and evaluated in a multi-period context

as demanded by the analysis of a stock pollutant and framed in a two-stage decision model.

In stage one θi is uncertain. In stage two the realization of the cost parameter and the

resulting first period emissions, q∗1, has been made, and then optimal level of emissions

in subsequent periods are chosen. Before solving our problem we first present in Figure

4 a graph like those that are often presented in expositing the difference between price

and quantity controls – see, for example, the Stern Report (2006, Box 14.1) among many

others. It contains a graph of the marginal benefit and the marginal cost of alternative

levels of period 1 emissions. Recall that qi = q for i = 2, . . . , N. The marginal benefit

function graphed is:
∂B(QN )

∂q1
= −b

(
q1 + (N − 1)q

)
, (13)

where the value for q is taken as fixed and independent of q1 and θ1. The marginal cost

function graphed is:
∂C(q1, θ1)

∂q1
= c

(
q1 − q̄

)
− θ1. (14)

Since it is most common in the literature to graph the marginal benefit and marginal cost

of abatement, we have done so as well in Figure 4. Abatement is just the difference between

actual emissions and some benchmark level of emissions.

Three separate cases of the marginal cost function are shown, corresponding to a high

and low realization of θi at i = 1 and to the mean value: θH
1 , θL

1 , and θM
1 . A high realization

means a higher marginal cost of abatement (a lower marginal cost of emissions) and corre-

sponds to the higher of the three lines. The quantity q̂1 corresponds to the intersection of

the marginal benefit function with the marginal cost function for the mean value of θi at

i = 1, θM
1 .3 Suppose that the government constrains period 1 emissions to this level, q̂1. If

3In a single period framework, q̂1 would be the optimal ex ante quantity constraint given the uncertainty
and inability to directly condition on it. In the multi-period framework, this is not exactly correct, since
the marginal benefit function as written above does not properly reflect the possibilities for adaptation in
future periods to the realizations in the first period uncertainty. But this complication will not concern us
here.
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Figure 4: Marginal costs and marginal benefits of abatement. It is most common to
show the marginal benefits and marginal costs as a function of abatement, which is the difference
between emissions and a benchmark. This is equivalent to charting the negative of the marginal
benefit and marginal cost functions from Equations (13) and (14), and reversing the direction of
the horizontal axis, as is done here. The marginal benefit of abatement is decreasing, while the
marginal cost of abatement is increasing. MC and MB represents marginal costs and marginal
benefits, respectively.

the realized cost parameter is θH
1 , then the economy will bear the marginal cost as marked

by point B in the figure. The deadweight cost of producing the pre-specified quantity given

this marginal cost curve is shown by the triangle ABH. If the realized cost parameter is

θL
1 , then the economy will bear the marginal cost as marked by point C in the figure. The

deadweight cost of producing the pre-specified quantity given this marginal cost curve is

shown by the other triangle ACL.

The price corresponding to this quantity constraint q̂1, and to the mean cost parameter,

θM
1 , is p̂ which is marked on the figure. Suppose, that instead of fixing the quantity

constraint, q̂1, the government had fixed the price to be p̂. In that case, the quantity of
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emissions would vary with each realization of θi at i = 1 as determined by the intersection of

the price line and the marginal cost curve associated with the realization. These quantities

are also shown in the figure. For the high realization of the cost parameter θH
1 , the quantity

of emissions corresponds to point D in the figure. For the low realization θL
1 , the quantity of

emissions corresponds to point E. The deadweight cost of producing the resulting quantity

for the high and low realizations of the cost parameter are shown by the respective DFH

and EGL triangles which are very, very small.

Clearly for this drawing of the graphs the solid black regions are smaller than the empty

regions, so that the price control is preferred. Were the relative slopes of the marginal

benefit and marginal cost functions reversed, quantity controls would be preferred. But,

the argument goes, because greenhouse gases are a stock pollutant, the marginal benefit

function is virtually flat and clearly less sharply sloped than the single period marginal

cost function. Since the range of variation of output in a single year is small compared to

the anticipated accumulation over the relevant horizon, the slope of the marginal benefit

function must be nearly flat. In contrast, the marginal cost of adjusting emissions within

the year curves sharply. The argument that it is better to regular a stock pollutant using

a price control hinges firmly on this assumption of the different time scales: a steep rise

of the marginal cost curve for a variation in emissions within a single year, and a gradual

rise of the marginal benefit curve for this exact same quantity of emissions as a fraction of

the centuries long total level of emissions creating the climate change problem.

The problem is that the marginal benefit function written in Equation (13) and shown

in the figure is not the correct marginal benefit function for the first period optimization

shown in Equation (12). The correct marginal benefit function is:

∂B(QN )

∂q1

= −b
(
q1 + (N − 1)q∗(q1, θ1)

)
·
(
1 + (N − 1)

∂q∗

∂q1

)
,

which recognizes as well how optimal outputs in the N − 1 future years are set conditional

on the first period cost realization and the first period choice of quantity. Therefore, the

correct first order condition for the optimization is:

∂V (q1, θ1)

∂q1
= −b

(
q1 + (N − 1)q∗(q1, θ1)

)(
1 + (N − 1)

∂q∗

∂q1

)
(15)

−(N − 1)c(q∗(q1, θ1) − q̄)
∂q∗

∂q1

+ (N − 1)θ
∂q∗

∂q1

.
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The first order condition on q∗ implies:

−b
(
q1+(N−1)q∗(q1, θ1)

)
(N−1)

∂q∗

∂q1
−(N−1)c(q∗(q1, θ1)− q̄)

∂q∗

∂q1
+(N−1)θ

∂q∗

∂q1
= 0, (16)

so that by substituting (16) into (15) we have:

∂V (q1, θ1)

∂q1

= −b
(
q1 + (N − 1)q∗(q1, θ1)

)
. (17)

The evaluation of Equation (17) depends upon the form of q∗(q1, θ1). For the first case, q∗

is independent of the realization of θt at t = 1, and – glossing over the dependence on q1,

which is likely to be small – Equation (17) reduces to Equation (13) so that Figure 4 is

approximately correct.

However, for the second case Figure 4 is entirely inappropriate. In the second case the

realization θ̃1 affects the cost functions in years i = 2, . . . , N, so that q∗ is not fixed and

independent of the cost parameter realization at i = 1. It is not appropriate to ignore

the dependence on θ̃1 as we ignored the dependence on q1. Assuming that N is large, the

output in a single year, q1, will have a small impact on the optimal output in subsequent

years. But the realization θ̃1 is a different sort of variable, which is why it is multiplied by

N − 1. The scale of the impact of a variation in θi at i = 1 is of the very same order as

the time scale of the stock pollutant problem. This is the crux of the problem. Therefore,

it is not correct to show a single marginal benefit function in Figure 4. A change in the

realization of the cost parameter θ̃1 actually shifts the marginal benefit function, and does

so at a large scale! In the second case we have:

d

dθ1

(∂V (q1, θ1)

∂q1

)
= −b(N − 1)

∂q∗

∂θ1
,

which is inconsistent with Figure 4. Figure 5 shows the actual situation for the second

case. Even when the ceteris paribus marginal benefit function appears flat, the relevant

relationship for comparing deadweight costs is not what this would seem to imply. Different

realizations of the cost parameter change the presumed baseline emissions in later periods

and therefore shift the marginal benefit function appropriate for evaluating a change in

period 1 emissions. The effect is comparable to what Stavins (1996) illustrates in the case
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of correlation between cost and benefit uncertainty. It is entirely possible that a quantity

control is preferred, despite the apparently flat marginal benefit function.

Figure 5: Marginal costs and marginal benefits for the second case. MC and MB
represents marginal costs and marginal benefits, respectively.

In the second case, the preference for quantity or price controls depends upon the

relative steepness of the marginal benefit function against the steepeness of the marginal

aggregate cost function. Equation (11) is a per period cost function. The aggregate cost

function, D(QN), is the result of allocating total emissions efficiently across years:

D(QN ) = min
q1,...,qN

N∑
i=1

c(qi, θi),

where
∑N

i=1 qi = QN .

Therefore in the second case the argument about stock pollutants loses its force entirely.
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There is no basis for arguing that the marginal cost is necessarily more sharply sloping

than the marginal benefit function. In the case of greenhouses gases, the assessment of

these aggregate benefit and aggregate cost functions is itself a matter of great uncertainty

and debate, see Hepburn (2005) and references therein.

4 Conclusions

We constructed a pair of simple examples that help clarify the role of uncertainty in the

choice of a price or quantity instrument for controlling a stock pollutant. Our contribution

is the simplicity of the model and the sharpness of our results. In particular, we fully

characterize the nature of the dynamic cost effective emission policy responding to shocks

to the cost of abatement, whether those shocks temporarily change the cost or permanently

change it. If the shocks to cost are exclusively temporary, then it is cost effective to adjust

the quantity period-by-period, keeping the marginal cost relatively constant. If the shocks

are exclusively permanent, then it is cost effective to keep the quantity fixed, letting the

marginal cost vary as the cost varies.

This result provides insight into the optimal instrument choice for a regulator attempting

to control emissions by private agents with better information on costs, although we do not

explicitly model this problem. In the case of temporary uncertainty, when the dynamic cost

effective emissions policy is to adjust the quantity period-by-period, keeping the marginal

cost relatively constant, it is most likely optimal to employ a price instrument. However,

in the case of permanent uncertainty, a price instrument will clearly not be optimal since

it is price that ought to absorb all of the shocks to cost. Instead, since quantity should

be invariant to the cost shocks period-by-period, a quantity instrument is likely to be

optimal. Our results, therefore, reinforce the findings of Newell and Pizer (2003) and Karp

and Zhang (2005) that the choice between using a quantity or price instrument hinges on

whether or not the uncertainty in costs is correlated across periods.

Our model also provides insight into the operation of a cap-and-trade system that allows

banking and borrowing of allowances across periods. The dynamic cost effective emissions

policy we derived is also an optimal dynamic allocation of allowances across the periods

included under a cap. Therefore, cap-and-trade with banking and borrowing implements

the dynamically cost effective emission policy, regardless of the sort of uncertainty. If the

cap-and-trade system faces temporary uncertainty in costs, then it will be the period-by-
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period quantity of emissions that will fluctuate under the cap-and-trade system, and the

price will be relatively constant. If the cap-and-trade system faces permanent uncertainty

in costs, then it will be the period-by-period price that will fluctuate under the cap-and-

trade system, and the quantity of emissions in each period will not be stochastic, but rise

deterministically at the rate of growth in costs less the interest rate.

Appendix: Temporary & Permanent Shocks

To grasp the difference between temporary and permanent uncertainty, it may help to

observe how shocks can affect the evolution of the cost parameter θi. Figure A-1 shows a

simulation of the cost parameter driven by temporary uncertainty and can be contrasted

with Figure A-2 which shows a simulation of the cost parameter driven by permanent

uncertainty. For this pair of simulations we generate a single set of sample paths for the

random errors, εi, i = 1, . . . , N. We use this one set of random errors to generate a set of

sample paths for the cost parameter that follows Equation (1), and to generate a set of

sample paths for the cost parameter that follows Equation (2). We use the same initial cost

parameter, θ0, and the same volatility parameter, σ. Also, we set the two drift parameters

so that the expected cost at the conclusion of the simulation are also approximately the

same: this requires that μ = ν − 1/2σ2. Therefore, both sets of sample paths for the cost

parameter have the exact same absolute volatility within each single period. However,

the volatility’s impact along a sample path is different, and the simulation helps one to

visualize this difference. Figure A-1(a) shows a single sample path of the cost parameter

when θi follows Equation (1). Figure A-1(b) shows the set of sample paths. Because

each shock has a purely transitory impact on the cost parameter, successive values of the

parameter are close to the original forecasted value, and vary from it only by the size of the

most recent shock. Therefore the path of the cost parameter is tight around the forecasted

path and remains tight at all horizons. The confidence interval for a forecast of the cost

parameter is constant at every forecasting horizon. Figure A-2(a) shows the corresponding

single sample path of the cost parameter when θi follows Equation (2). Figure A-2(b)

shows the corresponding set of sample paths. Because each shock has a purely permanent

impact on the cost parameter, successive values of the parameter may wander further and

further from the original forecasted value. Therefore the confidence interval for a forecast

of the cost parameter grows with the forecast horizon. The contrast between Figure A-1(b)

and Figure A-2(b) is the critical points of contrast between purely temporary and purely
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permanent shocks in this paper.
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(a) A path given purely temporary shocks
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Figure A-1: 5-year evolution of θi given purely temporary shocks. In this example, θ0 = 5,
ν = 0.10, σ = 0.2, and the time step corresponds to a week.
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A realization of θt given permanent shocks

(a) A path given purely permanent shocks
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Figure A-2: 5-year evolution of θi given purely permanent shocks. In this example, θ0 = 5,
ν = 0.10, σ = 0.2, and the time step corresponds to a week.

Appendix

We solve the optimal pollution control problem using recursive substitution. For the sake

of exposure, we count periods backwards from the endpoint using the index j to denote
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periods from the endpoint, with j = N, ..., 2, 1. Recall also that the allowed emissions

remaining in the subsequent period is a function of the emissions chosen in the current

period, q̄j−1 := q̄j − qj . We begin by solving the certainty case, since this provides useful

intuition for the uncertainty cases. We then solve the uncertainty case when per period’s

shock is purely temporary and purely permanent, respectively.

Certainty case

When σ = 0, we have the certainty case and the cost parameter follows the dynamics:

θj−1 = θj + ν = θ0 + (N − j + 1)ν.

Solving for j = 1, we have q∗1(q̄1, θ1) = q̄1. Therefore, the value function in the last period

V ∗

1 (q̄1, θ1) = c(q̄1, θ1) = eθ1−q∗
1 . For j = 2, we have

V2(q̄2, q2, θ2) = Eθ2

[
c(q2, θ2) + e−rV ∗

1 (q̄1(q̄2, q2), θ1)
]

= eθ2

[
e−q2 + e−(r−ν)e−(q̄2−q2)

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗2 =
1

2
q̄2 − 1

2
(ν − r). (A-1)

Substituting this into the value function gives the optimized value function:

V ∗

2 (q̄2, θ2) = 2eθ2−q∗
2 = 2eθ2−

1

2
q̄2+

1

2
(ν−r). (A-2)

For j = 3, we have

V3(q̄3, q3, θ3) = Eθ3

[
c(q3, θ3) + e−rV ∗

2 (q̄2(q̄3, q3), θ2)
]

= eθ3

[
e−q3 + 2e−

q̄3−q3−3ν+3r
2

]
.
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Solving the first order condition for the cost minimizing emissions gives us:

q∗3 =
1

3
q̄3 − 2

2
(ν − r)

Substituting this into the value function gives the optimized value function:

V ∗

3 (q̄3, θ3) = 3eθ3−q∗
3 = 3eθ3−

1

3
q̄3+(ν−r). (A-3)

For j = 4, we have

V4(q̄4, q4, θ4) = Eθ4

[
c(q4, θ4) + e−rV ∗

3 (q̄3(q̄4, q4), θ3)
]

= eθ4

[
e−q4 + 3e−

q̄4−q4−6ν+6r
3

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗4 =
1

4
q̄4 − 3

2
(ν − r).

Substituting this into the value function gives the optimized value function:

V ∗

4 (q̄4, θ4) = 4eθ4−q∗
4 = 4eθ4−

1

4
q̄4+ 3

2
(ν−r) (A-4)

Continuing the substitution iteratively, we obtain the general form of the optimal dynamic

policy:

q∗j =
1

j
q̄j − 1

2
(j − 1)(ν − r). (A-5)

and in calendar period i, it is:

q∗i =
1

N − i + 1
q̄i − 1

2
(N − i)(ν − r). (A-6)
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The general form of the optimized value function is:

V ∗

j (q̄j , θj) = jeθj−q∗j = jeθj−
1

j
q̄j+

1

2
(j−1)(ν−r) (A-7)

and in calendar period i, it is:

V ∗

i (q̄i, θi) = ieθi−q∗i = ieθi−
1

N−i+1
q̄i+

1

2
(N−i)(ν−r) (A-8)

Temporary shock case

When the per period’s shock is temporary, the cost parameter follows the dynamics:

θj = Θj + σεj , where Θj ≡ Θj+1 + ν.

Solving for j = 1, we have q∗1(q̄1, θ1) = q̄1. Therefore, the value function in the last

period V ∗

1 (q̄1, θ1) = c(q̄1, θ1) = eθ1−q∗
1 . For j = 2, we have

V2(q̄2, q2, θ2) = Eθ2

[
c(q2, θ2) + e−rV ∗

1 (q̄1(q̄2, q2), θ1)
]

=
[
eθ2−q2 + e−r

Eθ2

[
eθ1−(q̄2−q2)

]]

= eΘ2

[
eσε2−q2 + e−(r−ν−σ2

2
)e−(q̄2−q2)

]

Solving the first order condition for the cost minimizing emissions gives us:

q∗2 =
1

2
q̄2 − 1

2
(ν − r) − 1

4
σ2 +

1

2
σε2 (A-9)

Substituting this into the value function gives the optimized value function:

V ∗

2 (q̄2, θ2) = 2eθ2−q∗2 = 2eθ2−
1

2
q̄2+

1

2
(ν−r)+ σ2

4
−

1

2
σε2 (A-10)
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For j = 3, we have

V3(q̄3, q3, θ3) = Eθ3

[
c(q3, θ3) + e−rV ∗

2 (q̄2(q̄3, q3), θ2)
]

=
[
eθ3−q3 + e−r

Eθ3

[
2eθ2−

q̄3−q3−ν+r−σ2/2+σε2
2

]]

= eΘ3

[
eσε3−q3 + 2e−

q̄3−q3−3ν+3r−3σ2/4

2

]

Solving the first order condition for the cost minimizing emissions gives us:

q∗3 =
1

3
q̄3 − 2

2
(ν − r) − 1

4
σ2 +

2

3
σε3

Substituting this into the value function gives the optimized value function:

V ∗

3 (q̄3, θ3) = 3eθ3−q∗
3 = 3eθ3−

1

3
q̄3+(ν−r)+ 1

4
σ2

−
2

3
σε3 (A-11)

For j = 4, we have

V4(q̄4, q4, θ4) = Eθ4

[
c(q4, θ4) + e−rV ∗

3 (q̄3(q̄4, q4), θ3)
]

=
[
eθ4−q4 + e−r

Eθ4

[
3eθ3−

q̄4−q4−3ν+3r−3σ2/4−2σε3
3

]]

= eΘ4

[
eσε4−q4 + 3e−

q̄4−q4−6ν+6r−11σ2/12

3

]

Solving the first order condition for the cost minimizing emissions gives us:

q∗4 =
1

4
q̄4 − 3

2
(ν − r) − 11

48
σ2 +

3

4
σε4

Substituting this into the value function gives the optimized value function:

V ∗

4 (q̄4, θ4) = 4eθ4−q∗4 = 4eθ4−
1

4
q̄4+ 3

2
(ν−r)+ 11

48
σ2

−
3

4
σε4 (A-12)

28



Continuing the substitution, the general form of the optimal dynamic policy is:

q∗j =
1

j
q̄j − Ajσ

2 − 1

2
(j − 1)(ν − r) +

j − 1

j
σεj (A-13)

where

Aj =
j − 1

j

(
Aj−1 +

1

2(j − 1)2

)
for j = 2, . . . , N, and A1 = 0. (A-14)

Rewriting in calendar period i, we have:

q∗i =
1

N − i + 1
q̄i − Aiσ

2 − 1

2
(N − i)(ν − r) +

N − i

N − i + 1
σεj (A-15)

where

Ai =
N − i

N − i + 1

(
Ai+1 +

1

2(N − i)2

)
for i = 1, . . . , N − 1, and AN = 0. (A-16)

The general form of the optimized value function is:

V ∗

j (q̄j) = jeθj−q∗j = jeθj−
1

j
q̄j+Ajσ2+ 1

2
(j−1)(ν−r)− j−1

j
σεj (A-17)

and in calendar time:

V ∗

i (q̄i) = ieθi−q∗i = ie
θi−

1

Ni+1
q̄i+Aiσ

2+ 1

2
(N−i)(ν−r)− N−i

N−i+1
σεi . (A-18)

Permanent shock case

When the per period’s shock is permanent, the cost parameter follows the dynamics

θi = θi−1 + μ + σεi.
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Solving for j = 1, we have q∗1(q̄1, θ1) = q̄1. Therefore, the value function in the last period

V ∗

1 (q̄1, θ1) = c(q̄1, θ1) = eθ1−q∗
1 . For j = 2, we have

V2(q̄2, q2, θ2) = Eθ2

[
c(q2, θ2) + e−rV ∗

1 (q̄1(q̄2, q2), θ1)
]

=
[
eθ2−q2 + e−r

Eθ2

[
eθ1−(q̄2−q2)

]]

= eθ2

[
e−q2 + e−(r−μ+ 1

2
σ2)e−(q̄2−q2)e

1

2
σ2

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗2 =
1

2
q̄2 − 1

2
(μ − r). (A-19)

Substituting this into the value function gives the optimized value function:

V ∗

2 (q̄2, θ2) = 2eθ2−q∗
2 = 2eθ2−

1

2
q̄2+

1

2
(μ−r). (A-20)

For j = 3, we have

V3(q̄3, q3, θ3) = Eθ3

[
c(q3, θ3) + e−rV ∗

2 (q̄2(q̄3, q3), θ2)
]

=
[
eθ3−q3 + e−r

Eθ3

[
2eθ2−

q̄3−q3−μ+r
2

]]

= eθ3

[
e−q3 + 2e−

q̄3−q3−3μ+3r
2

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗3 =
1

3
q̄3 − 2

2
(μ − r)

Substituting this into the value function gives the optimized value function:

V ∗

3 (q̄3, θ3) = 3eθ3−q∗3 = 3eθ3−
1

3
q̄3+(μ−r). (A-21)

30



For j = 4, we have

V4(q̄4, q4, θ4) = Eθ4

[
c(q4, θ4) + e−rV ∗

3 (q̄3(q̄4, q4), θ3)
]

=
[
eθ4−q4 + e−r

Eθ4

[
3eθ3−

q̄4−q4−3μ+3r
3

]]

= eθ4

[
e−q4 + 3e−

q̄4−q4−6μ+6r
3

]
.

Solving the first order condition for the cost minimizing emissions gives us:

q∗4 =
3

4

q̄4 − 6μ + 6r

3

=
1

4
q̄4 − 3

2
(μ − r). (A-22)

Substituting this into the value function gives the optimized value function:

V ∗

4 (q̄4, θ4) = 4eθ4−q∗
4 = 4eθ4−

1

4
q̄4+

3

2
(μ−r) (A-23)

Continuing the substitution, we obtain the general form of the optimal dynamic policy is:

q∗j =
1

j
q̄j − 1

2
(j − 1)(μ − r). (A-24)

and in calendar time i, it is:

q∗i =
1

N − i + 1
q̄i − 1

2
(N − i)(μ − r). (A-25)

The general form of the optimized value function is:

V ∗

j (q̄j , θj) = jeθj−q∗j = jeθj−
1

j
q̄j+

1

2
(j−1)(μ−r) (A-26)

that in calendar time i is:

V ∗

i (q̄i, θi) = ieθi−q∗i = ieθi−
1

N−i+1
q̄i+

1

2
(N−i)(μ−r). (A-27)
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