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Abstract

We show that residential rooftop solar photovoltaics (PV) adoption under typical elec-
tricity tariffs that inefficiently recover residual costs through volumetric charges creates 
substantial income distributional effects. Specifically, rooftop solar PV adoption under 
such tariffs increases average expenditures substantially for non-adopters, which tend 
to be predominately lower income customers. At high penetrations of rooftop solar 
PV inefficient rates can increase average expenditures for non-adopting customers by 
as much as 80%. Efficient tariffs prevent this regressive cost shifting. Further, we find 
that under moderate PV adoption low-income consumers may be better off under a 
tariff that recovers residual costs through fixed charges—a rate design often criticized 
for being regressive in nature. In short, failing to reform residential electricity rates 
may lead to worse distributional outcomes than reforming rates, even if reforms are 
implemented naively.
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1 Introduction and Background1

Improving electricity rate design is one of the most important tasks facing regulators in the2

21st century. Electricity prices are the nervous system of the power sector, helping coordinate3

the diverse interests of the producers and consumers that rely on the power grid. Efficient4

prices are one of the keys to ensuring that the trends of decentralization, decarbonization,5

and digitization benefit, rather than harm, customers (Pérez-Arriaga et al., 2016). As a6

result, regulators globally are searching for ways to modernize electricity rates.7

While the basic tenants of economically efficient rate design have been known for nearly8

a century, rates today remain inefficient for the vast majority residential and commercial9

consumers. Many factors contribute to this gap between theory and practice. One key10

factor is that electricity is essential to modern life and is regulated as such. The result is that11

economic efficiency is often not the primary—and almost never the sole—goal for regulators12

when setting prices. Rather, regulators often prioritize goals of fairness and distributional13

equity1 when setting prices. For example, of the California Public Utility Commission’s14

(CPUC) rate design principles, the first relates to access and affordability to electricity for15

vulnerable populations (California Public Utilities Commission, 2018).2 The CPUC is not16

alone—regulators across the U.S. are broadly concerned with the distributional impacts of17

tariffs (Levinson and Silva, 2019).18

The emergence of distributed energy resources (DER) adds a new dimension to the challenge19

of assessing the distributional impacts of rate design. A full accounting of the distributional20

impacts of rate design must now consider not only how any given rate will impact different21

customer types, but also how the rate will influence DER adoption, how rates change as22

customers install DERs, and how these changes impact customers of different socioeconomic23

groups. While some literature analyzes the distributional impacts of transitioning to time24

varying energy charges (see, e.g., Horowitz and Lave (2014)) or to alternative network charges25

(see, e.g., Borenstein (2011), Borenstein and Davis (2012), and Azarova et al. (2018)), there26

is a dearth of research analyzing how efficient or inefficient rates perform as DER adoption27

increases.28

1Distributional equity refers to any relevant standards for the distribution of goods between different
various members of society, particularly between vulnerable and non-vulnerable customers (Burger et al.,
2018).

2Vulnerable customers in the context of the California Public Utilities Commission (2018)’s rate design
principles refers to “low-income and medical baseline customers.” This paper defines “vulnerable customers”
broadly as any customer group that has been defined as needing electricity price and/ or bill protections in
a given location. Low-income, fixed-income, and rural customers are the most common types of vulnerable
customers.
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DER adoption and retail electricity rates are intertwined in two ways. First, in many markets,29

including the vast majority of U.S. markets, DERs are remunerated according to the retail30

tariff.3 Second, the costs of DER adoption and support programs are often recovered through31

the retail tariff.432

This paper analyzes the rate impacts of the installation of rooftop solar photovoltaics (PV)33

by homeowners in the Chicago, Illinois region under alternative electricity rate designs.34

Specifically, we analyze the impacts of inefficient and efficient methods for recovering residual35

network costs as DER penetration increases. While the data used to parameterize the models36

used herein are from Chicago, the lessons gleaned about the potential impacts of inefficient37

rates are universal.38

This paper uses three primary data sources and tools. First, we develop simple models39

that captures a utility’s costs, the structure of the tariffs used to recover these costs, and the40

changes in the utility’s costs and rates as the penetration of rooftop solar PV among residen-41

tial customers increases. We parameterize these models with half-hourly energy consumption42

data for 100,170 customers in the Chicago, Illinois region, and with U.S. census (American43

Community Survey) data on the socioeconomic characteristics of these customers. Finally,44

we leverage data from the Lawrence Berkeley National Laboratory on the income trends of45

rooftop solar PV adopters to simulate the demographics of PV adoption (see Barbose et al.46

(2018)).47

The research presented here leads to several novel results. First, we find that annual ex-48

penditures for non-solar adopting customers in the bottom income quintile5 may increase49

substantially—by as much as 80%—at high solar penetrations under the default electricity50

tariff in ComEd. The default ComEd tariff does not vary with time and recovers a substan-51

3The retail tariff directly determines the value of energy production from behind-the-meter DERs, when
that energy production offsets consumption. For example, if a customer pays $0.10 per kilowatt-hour (kWh),
then the value of DER production (when that production offsets local consumption) is $0.10/kWh. In many
places, the retail tariff also determines the value of energy production from DERs that is exported to the grid.
In the most generous case, exported energy from DERs receives a price equal to the cost of consumption,
i.e. $0.10/kWh if the retail rate is also $0.10/kWh; this is called net-metering. The retail tariff might also
determine if there are other applicable rates for DERs. In some locations, DER owners pay additional fixed
monthly charges, or are placed on a different tariff type (e.g., time-of-use).

4In many cases, for example in the European Union, the aggregate costs of explicit subsidies for DERs
are recovered through retail tariffs. This paper focuses on a more subtle type of DER support cost. As this
paper discusses in much more detail, if DER adoption reduces a customer’s payments more than it reduces
system costs, the resulting revenue shortfall may require increasing rates. Where rates allow customers to
avoid paying for residual costs by reducing net demand, a DER-driven decrease in net demand increases the
effective per kWh charge for residual cost recovery.

5That is, the customers with the lowest 20% of incomes. Throughout this paper we refer to the customers
with the lowest 20 percent of incomes as the 1st income quintile, or Q1. Likewise, we refer to customers with
the highest 20% of incomes as the fifth income quintile, or Q5.
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tial portion of total residual network and policy costs through volumetric charges ($/kWh).52

Under this tariff, as customers adopt solar they decrease their net demand, requiring an in-53

crease in charges for residual cost recovery and increasing bills for non-solar adopters. Given54

that the majority of solar adopters tend to be affluent, this drives a net increase in expen-55

ditures for less affluent customers. Average expenditures for all customers in the bottom56

income quintile—including both adopting and non-adopting customers—could increase as57

much as 35%.58

Second, we find that tariffs with efficient cost recovery mechanisms—that is, fixed charges—59

do not create such cost shifts; solar PV adoption under efficient tariffs leads to average bill60

savings across all income quintiles.61

Third, we find that average expenditures for low-income customers under a tariff with vol-62

umetric residual cost recovery exceed average expenditures for low-income customers under63

a tariff with uniform fixed charges for residual cost recovery at moderate levels of solar PV64

penetration (less than 25% of single-family homes). This finding dispels the common belief65

that volumetric rates are inherently progressive relative to fixed charges.66

Finally, we find that net metering under the default tariff likely overcompensates rooftop67

PV for the network loss and capacity cost reductions that it may create, even under very68

aggressive assumptions about the magnitudes of these cost reductions. More specifically,69

the marginal revenue per-kilowatt (kW) of solar PV under tariffs that accurately value the70

impact of solar PV adoption on future network costs is less than the marginal revenue per-71

kW of solar PV under the default (flat) tariff. This reinforces the idea that time invariant72

rates with volumetric residual cost recovery mechanisms are crude and imperfect subsidies73

for distributed solar PV.74

This paper proceeds as follows. Section 1.1 introduces the literature covering issues related75

to rate design and the distributional impacts of rooftop PV adoption. Section 2 reviews the76

methods used to assess the potential distributional impacts of DER adoption in this paper.77

The data used in this study are extensive, and are thus detailed separately in Appendix 6.1.78

Section 3 assesses the distributional impacts of efficient and inefficient rates as distributed79

PV penetration among residential customers increases. Given the lack of data regarding the80

topology and investment needs in the distribution system in the ComEd service territory,81

Section 3 assumes that the distribution network is sufficiently sized such that no new distri-82

bution investments are needed, meaning that solar PV penetration does not reduce network83

costs. Section 4, on the other hand, assumes that all distribution network costs are marginal84

with respect to consumption and production, and designs a tariff that accounts for these85

marginal distribution network costs. Section 4 then analyzes the distributional impacts of86
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increasing rooftop solar PV adoption under this tariff. Together, the results in Section 387

and Section 4 provide a useful bound on the potential distributional impacts of efficient and88

inefficient electricity rates. Finally, Section 5 discusses and concludes. Extensive sensitivities89

of the results to assumptions are detailed in the Appendices.90

1.1 Background Literature91

The literature on electricity tariff design is large, with theoretical work on efficient rate92

design beginning in the early 20th century (Coase, 1946; Houthakker, 1951; Vickrey, 1971;93

Borenstein, 2005). More recently, the theoretical benefits of efficient rate design have been94

demonstrated in empirical research (Jessoe and Rapson, 2014; Wolak, 2011; Allcott, 2011;95

Savolainen and Svento, 2012). The overarching message of this theoretical and empirical96

research is that the societal benefits of electricity consumption are maximized when the97

marginal price that customers pay for consuming (and are paid for producing) energy is98

equal to the social marginal cost of producing that energy. This implies that any electricity-99

related costs that do not vary with short run production and consumption decisions and that100

are not recovered by short run social marginal costs6 are most efficiently recovered through101

non-marginal charges.102

Economic efficiency is not the only consideration in rate design. For example, many consid-103

erations exist alongside economic efficiency in the widely used rate design principles outlined104

in Bonbright (1961) and Chapter 8 of Pérez-Arriaga (2014). Among these considerations,105

equity—and, in particular, the distributional effects of rate design—loom large. Indeed, reg-106

ulation has long been used as a means of distributing benefits (Posner, 1971). As evidence107

of this fact, Levinson and Silva (2019) found that utilities in regions with higher levels of108

income inequality had more income redistributive electricity rates. Most commonly this109

entails recovering residual costs7 through volumetric, rather than fixed, charges. Transition-110

ing from volumetric to fixed charges that are uniform for all customers would be regressive111

with respect ot income (Borenstein, 2012b; Burger et al., 2020). However, non-uniform fixed112

charges can be designed to recover residual costs in an income neutral or even progressive113

way (Burger et al., 2020).114

6The economics literature refers to these costs as “residual” costs. In short, these are the costs left over
(residual) after efficient prices have been charged. Given non-convexities in the long-run supply function
for electricity and many other factors, efficient marginal prices rarely recover all network and regulatory
costs, meaning that residual costs make up a substantial portion of total electricity costs Rubio-Odériz and
Perez-Arriaga (2000).

7A portion of the costs associated with electricity transmission and distribution networks as well as costs
associated with regulations and policies that are recovered through tariffs.
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In recent years, regulators and the academic literature have begun to focus on the interaction115

between DER adoption and retail rates, with a focus on the distributional impacts of DER116

adoption. Given the scale of the distributed solar industry relative to other distributed117

resources, the bulk of the literature on the net social benefits of DERs and the distributional118

impacts of DER support schemes has focused on solar PV. Vaishnav et al. (2017) analyzes the119

costs of support programs for rooftop solar PV and the benefits of the associated climate and120

air pollution reductions, and finds that, between 2011 and 2015, private benefits exceeded121

public benefits by roughly $13.5 billion in the U.S.8 Vaishnav et al. (2017) also find that122

these benefits have accrued predominately to more affluent households. Similarly, Borenstein123

(2017) analyzes the private benefits of solar PV adoption in California, and finds that these124

benefits have disproportionately accrued to affluent households. Borenstein and Davis (2016)125

analyze support programs beyond solar PV, including tax credits for home weatherization,126

hybrid and electric vehicles, and other types of “clean energy;” the authors again find that127

the top income quintiles receive the lion’s share of the benefits of these programs.128

Outside of federal tax credits, the costs of which are recovered through general taxation129

measures, the bulk of the costs of support programs for DERs are recovered through charges130

levied on electricity consumers in electricity tariffs. Rates also must recover residual network131

costs. The second relevant stream of literature analyzes how the structure of the mechanisms132

used to recover DER support costs, more generic policy costs, and residual network costs133

impacts customers of different socioeconomic groups.134

One challenge associated with measuring the distributional impacts of rate designs is that135

determining the structure and magnitude of an economically efficient tariff is not straight-136

forward. The ideal short run marginal price—i.e. the variable price in the tariff at any given137

point in time—would convey the full societal marginal cost of consumption or production.138

This marginal price should include the cost of any externalities (e.g., emissions), the cost of139

energy, and, critically, the marginal cost of short run production and consumption decisions140

on future network and generation capacity costs.141

If the electricity tariff enables a DER adopter to save money in excess of society’s cost142

savings from that DER adoption, the excess savings are both a transfer from non-adopters143

to adopters and a wedge between efficient and a source of inefficient DER adoption. Given the144

complexities of the issue and a general dearth of useful data, there is substantial uncertainty145

over the optimal design and magnitude of price signals to reflect the marginal impacts of146

8Note that this analysis does not include two important factors. First, the potential network cost impacts
(either cost reductions or increases) of DER adoption. Second, the potential spillover benefits of solar PV
subsidies on cost reduction and deployment in other markets. For a discussion of these benefits, see Gerarden
(2017) and Borenstein (2012a).
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consumption and production decisions on network costs. While the magnitude and design147

of the optimal marginal network tariff is uncertain, one thing is clear: the magnitude of the148

optimal marginal network tariff will vary widely depending on location and time (Burger149

et al., 2019; Pérez-Arriaga et al., 2016).150

Some initial evidence suggests that DERs—in particular, rooftop solar PV—enable greater151

private savings than system cost reductions on average. For example, Schmalensee et al.152

(2015) finds that solar PV adoption likely increases rather than decreases network costs153

under a variety of conditions. Using a simulation model, Satchwell et al. (2015) finds that154

solar PV adoption generally reduces private costs in excess of utility costs using two model155

utilities in the U.S.156

This observation, combined with the fact that the benefits of DER support schemes have157

flown predominately to the affluent, has led to a review of the role of tariffs in the dis-158

tributional impacts of DER adoption. Nelson et al. (2011) argues that the mechanism for159

supporting rooftop solar PV in Australia is regressive, benefiting high-income customers at160

the expense of lower income customers. Simshauser (2016) concurs, finding that, as rooftop161

solar PV penetration increases, flat, volumetric rates cause a net cost shift from low-income162

to higher-income customers in Australia, and argues for coincident-peak demand-based tariffs163

as a potential remedy. Simshauser (2016) extrapolates from a small set of customers intended164

to represent typical Queensland Australia customers. Using a model of nine customers in-165

tended to be representative of customers in New Jersey in the United States, Johnson et al.166

(2017) similarly finds that DER adopters tend to benefit at the expense of non-adopters.167

Leveraging a data set of 199 customers in the United Kingdom, Strielkowski et al. (2017)168

duplicates Simshauser (2016)’s model and, logically, find similar results. Using a robust169

data set of annual consumption9 from roughly 135,000 customers in Switzerland, Feger et al.170

(2017) calculates tariffs that equalize bill increases across income classes while meeting a171

specified distributed solar adoption target.172

The findings from this literature are relatively consistent: DER adoption has the potential173

to create distributional impacts across adopters and non-adopters, and across customers of174

different socioeconomic backgrounds. This paper builds upon this literature by expanding175

the scope of analysis (no paper to date has analyzed these issues in the U.S. context),176

leveraging a large and granular data set, and simulating potential futures with very high177

penetrations of rooftop solar PV.178

9The authors partner with a Swiss startup to simulate hourly consumption profiles based on household
characteristics.
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2 Methods179

We first detail the method used to simulate solar PV adoption. We then detail how this180

adoption information is used to estimate the distributional impacts of different tariffs.181

2.1 Solar Adoption and Production Simulation182

Holding the adoption probabilities introduced in Section 6.1.2 constant, we calculate the183

probability that any given customer will adopt solar at each penetration level, allowing this184

probability to differ across income quintiles. Specifically, we calculate:185

αQ,φ =
φ
∑

Q(NQ)PQ

NQ

, (1)

φ is the percentage of single-family homes that have solar (e.g., 0%, 1%,...,75%), NQ is the186

number of customers in each income quintile Q in our sample (see Table 4), and PQ is the187

fraction of total solar adoption that happens in income quintile Q (see Table 5). A sample188

output from this equation is provided in Table 1.189

Table 1: Customer-level PV adoption probabilities at different penetrations, 2016 Distribu-
tion case

All Single-Family Homes Customer Adoption Probability
PV Penetration Level 1st Quintile 2nd Quintile 3rd Quintile 4th Quintile 5th Quintile

φ α1 α2 α3 α4 α5

0.5% 0.3% 0.3% 0.6% 0.7% 0.6%
1.0% 0.6% 0.6% 1.2% 1.3% 1.3%
1.5% 0.9% 0.8% 1.7% 2.0% 1.9%
2.0% 1.2% 1.1% 2.3% 2.7% 2.5%

...
...

...
...

...
...

73.0% 42.6% 41.0% 84.8% 97.7% 92.0%
73.5% 42.9% 41.2% 85.3% 98.3% 92.7%
74.0% 43.2% 41.5% 85.9% 99.0% 93.3%
74.5% 43.4% 41.8% 86.5% 99.7% 93.9%
75.0% 43.7% 42.1% 87.1% 100.0% 94.6%

In order to simulate which customers adopt solar at any given penetration level, we first190

draw a random number between zero and one, randi. If randi is less than αQ,φ, we assume191

that the customer has adopted solar (we denote this with λi,φ = 1).192
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Thus, at any given point in time, solar generation for customer i is as follows:193

gi,t,φ = λi,φκig̃t (2)

g̃t is the normalized solar generation per kW (AC) of solar PV (in units of kWh per kW), and194

κi is the size of the solar PV array adopted by customer i. We explore two different models195

for κi. First, we size each adopting customer’s solar PV system according to that customer’s196

annual peak demand (κi = x̂i,t). We refer to this as the “Peak Demand PV Case.” Second,197

we size each customer’s solar PV system such that it meets 80% of the customer’s energy198

demand for the year (κi =
0.8

∑
t(xi,t)∑
t(g̃t)

). we refer to this as the “Annual Consumption PV199

Case.” In the Annual Consumption PV Case, the average PV unit size in our sample is 3.6200

kW. In the Peak Demand PV Case, the average PV unit size is 5 kW. The average rooftop201

PV unit size in the U.S. is 5 kW according to the Solar Energy Industries Association, the202

trade association representing the U.S. PV industry (Solar Energy Industries Association,203

N.D.). We discuss the impact of sizing assumptions in Section 3.204

Figure 1 displays the peak demand and net demand for three solar PV penetration cases205

under the Annual Consumption PV Case and with a PV azimuth of 180. The blue line on206

each plot is the peak demand at that penetration level. Two observations are particularly207

relevant. First, the aggregate peak demand of all of the customers in our sample decreases208

by only 0.8% as the penetration of rooftop PV increases. This is particularly relevant for209

assumptions about the recovery of residual costs, discussed in Section 3. Second, large210

injections of power become fairly common in the winter and shoulder seasons. We discuss211

these trends in more detail in Section 4.212

One of the primary impacts of solar adoption is to shift the period of peak net demand on213

the system. However, this effect is not uniform. Due to low or no solar production during214

winter and shoulder month peak demand periods, solar PV production does not impact the215

period of coincident peak demand during winter and shoulder months. However, solar PV216

does produce during periods of coincident peak during the summer months, shifting peak217

net demand later in the day. This phenomenon is depicted in Figure 2. Figure 2 shows218

the marginal impact on net demand of a one percent increase in penetration of solar PV219

during a week in January (left panel) and a week in July (right panel) for three levels of220

solar penetration: 0% on top, 30% in the middle, and 60% on the bottom. The vertical blue221

lines represent the hour of peak net demand on each day. We see clearly that solar PV has222

little impact on winter peak demand, but shifts summer peak demand by several hours as223

penetration increases.224
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Figure 1: Net Demand Profiles for φ = 0, 30, and 60

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.

2.2 Modeling the Distributional Impacts of Rate Designs225

The primary goal of this paper is to understand the potential distributional impacts of226

PV adoption under different tariff designs. The optimal tariff contains price signals for227

marginal energy, generation capacity, and network capacity costs, and recovers all remaining228

residual costs through a fixed charge. While fixed charges are the most efficient mechanisms229

for recovering residual costs, most U.S. and European utilities also recover some portion230

of residual costs through volumetric charges. Further, the vast majority of tariffs charge231

a constant, time invariant price for energy and do not contain marginal price signals for232

network and generation capacity.233

We now define a customer’s electricity bill as a function of a generalized framework, the234

values of which depend on the solar penetration level (φ). This is represented in Equation 3.235

We represent a customer i’s demand at time t as xi,t, and the customer’s solar generation at236

time t as gi,t,φ. Given this, the expenditure for customer i over a given time period can be237

represented as the sum the fixed charge, Fi,φ, and the sum of customer’s net demand at a238

9



Figure 2: Net Demand Profiles for Two Selected Weeks for φ = 0, 30, and 60

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.

particular point in time (e.g., hour), xi,t − gi,t,φ, times the marginal price (for consumption239

and/or production) that customer i faces at time t, pi,t,φ.10 Depending on the tariff structure,240

pi,t,φ may include the following components:241

1. pei,t: The volumetric charge for energy242

2. pccci,t : The volumetric charge for marginal generation capacity (“CCC” stands for coin-243

cident capacity charge)244

3. pcpt,z,φ: The volumetric charge for marginal network capacity (“CP” stands for coincident245

peak)246

4. pri,t,φ: The volumetric charge for residual cost recovery247

10The consumption data used in this study are reported as kWh used over a half-hourly period. Demand-
based charges (dollar per kW) can be represented as energy charges by multiplying the energy consumed by
two. For example, if a consumer was reported to have consumed 1/2 kWh in a given 30-minute period, this
is equivalent to consuming 1 kW for 30 minutes.
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As noted, many of the components of pi,t,φ will be zero for many tariffs. For example,248

ComEd’s default tariff is comprised of only a volumetric energy price, a volumetric charge for249

residual cost recovery, and a fixed charge for residual cost recovery. Under ComEd’s default250

tariff, the energy charge is constant throughout each day—that is, the private marginal price251

paid by each customer does not change depending on when the customer consumes.252

In the other rate designs studies in this paper—designs beginning with the letter “RTP”—253

the volumetric charge for energy—pei,t—reflects the short-run marginal price of energy at254

the ComEd trading hub of the electricity market operated by the Regional Transmission255

Operator, PJM.11 As a result, for the RTP tariffs studies here, pei,t changes on an hourly256

basis throughout the year.257

Following this logic, the tariff titled “RTP-CCC” is a real-time price tariff with a critical258

capacity charge; the RTP-CCC tariff recovers all residual costs through a fixed charge.259

The “RTP-CCC-CP” charge is a real-time price tariff with a critical capacity charge and a260

coincident peak charge.261

Consumer expenditures are calculated as follows:262

Ei,φ = Fi,φ +
∑
t

(
pi,t,φ(xi,t − gi,t,φ)

)
. (3)

The charge for marginal network capacity should only be non-zero when and where marginal263

consumption or production decisions will drive investments in new network capacity (Pérez-264

Arriaga et al., 2016; Abdelmotteleb et al., 2018). Ideally this charge would vary on a feeder-265

by-feeder basis, and the magnitude of the charge would be determined using measured load,266

network topology, and accurate forecast data. In the case of a congested feeder with necessary267

upgrades, the charge should equal the marginal change in the time value of money between268

the point at which a network investment would have been required in the absence of a DER269

and the point at which the network investment is required given the DER. This is depicted270

in Figure 3. Likewise, if a feeder were congested due to DER-driven injections of power,271

the charge should convey the marginal time discounted cost of the investments necessary to272

accommodate increased peak injections.273

Given the lack of distribution network topology and technical data and the lack of load274

11PJM operates the transmission system in many mid-Atlantic states in the U.S. In addition to operating
the transmission system, PJM operates wholesale electricity markets. One of the outcomes of these markets
are a set of locational prices that represent the marginal cost of consuming or the marginal value of producing
electricity at the various nodes or trading hubs in the PJM market (these prices do not necessarily represent
the short-run social marginal cost, as they often fail to internalize climate and health externalities). See
http://pjm.com/.
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Figure 3: Measurement of Network Capacity Value

Adapted from Cohen et al. (2016).

forecast and investment plan data, we simulate the distributional impact of rates under two275

extreme cases. First, a case in which we assume that no distribution feeders are congested,276

and thus that there are no marginal distribution network costs. This case will tend to show277

large distributional impacts of PV adoption, as a greater share of network costs are assumed278

to be residual, enabling larger cost shifts as PV adoption increases. Second, we model a case279

in which we assume that all distribution feeders are congested, and thus that all distribution280

network costs are marginal. This case will tend to show smaller distributional impacts of281

PV adoption, as a smaller share of network costs are assumed to be residual, decreasing cost282

shifts as PV adoption increases. We detail the methods for estimating the price signal for283

marginal network costs in Section 2.3. Together, these two cases provide a range of possible284

distributional impacts of efficient and inefficient rates as PV adoption increases.285

Given the lack of distribution network data, the purpose of the modeling of marginal distri-286

bution network costs is not to estimate with precision the exact magnitude of distributional287

impacts. Rather, we try to: 1) estimate the potential order of magnitude of the cost shift,288

2) develop an intuition for the potential distribution of the cost shift, and 3) understand the289

dynamics of the cost shift as distributed PV penetration increases.290

A key component of our analysis of the distributional impacts of rate design is ComEd’s total291

residual costs. We estimate ComEd’s total residual costs as Rr =
∑

i,t

(
Fi,φ=0 + xi,tp

r
i,t,φ=0

)
,292

where xi,t is the demand of customer i in time t, and Rr is the total set of residual costs that293

the utility must recover. In zero marginal network costs case, Rr includes all distribution294

facilities, metering and customer, policy, and transmission costs. In the marginal network295

costs case, Rr includes all metering and customer, policy, and transmission costs, as we296
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assume that the distribution facilities costs are marginal (and thus not residual). As solar297

PV generation increases, residual costs must be recovered across net demand:298

Rr = Fi,φ +
∑
i,t

(
(xi,t − gi,t,φ)pri,t,φ

)
∀φ = 0, ..., 75 (4)

As solar penetration (φ) increases, total solar generation increases and net demand (demand299

minus solar generation) decreases. For an efficient tariff, pri,t,φ = 0∀φ. However, in practice,300

pri,t,φ is typically greater than zero (as it is under ComEd’s default rate). Since pri,t,φ is301

greater than zero at φ = 0, pri,t,φ or Fi,φ must increase as φ increases for all residual costs to302

be recovered (i.e. to meet the constraint in Equation 4).303

There are three key assumptions embedded in this method. First, xi,t does not change with φ;304

that is, solar adopters do not modify their consumption behavior after adopting solar. Note305

that under a net-metering scheme as modeled here, the temporal profile of the customer does306

not affect the change in pri,t,φ—only the sum of the net demand. Second, Rr remains constant307

as φ increases. This assumption likely overstates the potential distributional impacts at low308

penetrations, and understates the distributional impacts at high penetration. Modeling309

results indicate that distributed PV adoption can reduce distribution system costs at low310

penetration, and increases these costs at higher penetrations (Schmalensee et al., 2015; Cohen311

et al., 2016). While empirical work on this issue is limited, there is initial evidence that312

distributed PV may increase network costs (and thus residual costs) even at low penetrations313

(Wolak, 2018). The third core assumption in Equation 4 is that all residual costs must314

be recovered. There is legal precedent for writing off assets that are not longer valuable.315

However, this is not common in practice. Further, as we show in Figure 1, peak demand316

remains fairly consistent as PV penetration grows, indicating that the assets in this case317

study are likely still useful.318

2.3 Estimating marginal distribution network costs319

In order to estimate marginal distribution network costs, we approximate feeder level demand320

by clustering demand at every five-digit zip code, z ∈ R153. In short, we assume that all321

customers in a given zip code belong to one feeder. The average peak demand across each zip322

code in this sample is roughly three megawatts (MW), which is in line with peak demands323

on average four kilovolt-amp feeders in the U.S.324

To find the marginal cost of reducing (or of driving) coincident network loading, we perform325

the calculations depicted in Equations 5. We begin by identifying the times of the maximum326
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200 half hours of the absolute value of net demand (demand minus generation) in each z.327

Note that peak network loading may occur during times of PV injection and thus negative328

net demand. We sum the net demand across all customers i in each time period t and identify329

the top 20012 half-hourly network loading periods in each z. Note that the demand in this330

case is the demand across all 100,170 customers in the sample, not the subset of single-331

family homes. This follows from the fact that networks are built to meet the demand of all332

customers. We refer to the times of these coincident peak periods as t̂z,φ. We then calculate a333

per-kWh coincident-peak charge, referred to as pcpt,z,φ, that recovers all distribution facilities334

costs from expected net demand in these coincident peak hours. We do this by dividing335

all distribution facilities costs13 by the sum of the absolute value of net demand in these336

200 half hours. This charge is symmetric—that is, a marginal increase in demand during a337

coincident peak demand period will increase customer expenditures, and a marginal increase338

in injection during a coincident peak injection period will also increase expenditures.339

pcpt,z,φ =


Rdfc∑

t,z |xt,z,φ−gt,z,φ|
if t ∈ t̂z,φ

0 otherwise
(5)

The calculations depicted in Equations 5 and 8 assume that all distribution facilities costs340

are marginal (that is, that no distribution facilities costs are residual), and that marginal341

costs are driven by demand during coincident peak hours. Given that not all areas within a342

distribution network will require investments at any given point in time, this likely overstates343

the potential magnitude and pervasiveness of marginal network costs. By holding Rdfc
344

constant, we’re making the assumption that total costs remain constant even as marginal345

costs change.346

2.4 Estimating the value of avoided distribution network technical347

losses348

In addition to estimating marginal distribution network costs, we estimate marginal dis-349

tribution network losses. These marginal losses augment the marginal price of electricity.350

Electrical losses emerge in power systems due to a variety of factors, including ohmic (resis-351

tive) heating of electrical equipment (e.g., lines) as power flows through these lines. While352

12We discuss the sensitivity to this peak period assumption in the appendices to this paper.
13This is referred to as Rdfc, with Rdfc ≈ $19M . This excludes metering and customer related charges

(e.g., billing) as well as transmission costs. We assume that distributed PV will not reduce these costs.
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some electrical losses are “no load” losses,14 ohmic losses are related to the square of the353

current flowing through the network. That is, lt,z,φ ∝ I2
t,z,φRz. Where lt,z,φ is ohmic losses at354

time t in location z and solar penetration φ; I2
t,z,φ is the square of the current; and Rz is the355

ohmic resistance. Marginal losses with respect to a change in load at any given point in time356

are equal to the derivative of the loss function with respect to the current:
∂lt,z,φ
∂It,z,φ

∝ 2It,z,φRz.357

While distributed solar cannot reduce no load losses, it may reduce ohmic losses by reducing358

power flows over the distribution network.359

We cluster demand by zip code as in Section 2.3. We then find the effective resistance,360

denoted Rz,l̄, at an assumed average total loss value across the entire distribution system,361

denoted l̄. We assume a constant voltage at the distribution level, and directly relate current362

and demand. We calculate marginal losses in every time period assuming a constant Rz,l̄,363

and measure the value of solar PV in reducing these losses, denoted sl
z,φ,l̄

. We calculate364

marginal losses and loss avoidance values for two values of l̄: 4% and 7%. This process is365

depicted in Equation 6:366

Rz,l̄ = l̄

∑
t(xt,z,φ=0)∑
t(x

2
t,z,φ=0)

,

∂lt,z,φ,l̄
∂It,z,φ

= 2(xt,z,φ − gt,z,φ)Rz,l̄,

pe
′

i,t = pei,t

(
1 +

∂lt,z,φ,l̄
∂It,z,φ

)
. (6)

Considering all volumetric energy, marginal network and generation, and marginal losses367

values, the revenue of customer i’s PV unit is modeled as si,t,φ = λi,φκig̃t(pi,t,φ) for any368

given tariff. pi,t,φ is the total variable (dollar per kilowatt-hour) charge and contains several369

components (e.g., pri,t,φ and pei,t,φ).370

14That is, they are technical losses (i.e. not the result of electrical theft) but do not depend on the
flow of power through the system. No load losses emerge from the need to energize the cores of electrical
transformers, for example.
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3 The Distributional Impacts of Rate Design with So-371

lar PV Adoption:372

Zero Marginal Network Costs373

In this section, we explore the potential distributional impacts of DER adoption under374

ComEd’s default flat tariff and under the RTP-CCC and RTP-CCC-APD (defined below)375

tariffs under the assumption that zero percent of network costs are marginal. That is, in376

this section, pcpt,z,φ = 0. In Section 4 we explore the possibility of non-zero values for pcpt,z,φ.377

The RTP-CCC and RTP-CCC-APD tariffs recover all residual costs through fixed charges.378

As a result, pri,t,φ = 0 for all i, t, and φ. This provides a useful contrast to the default tariff,379

in which pri,t,φ ≈ 0.05 $/kWh for φ = 0. Customer expenditures under the default tariff380

and the RTP-CCC tariffs are calculated as in Equation 7. Note that the RTP-CCC and381

RTP-CCC-APD tariffs are identical except for the fixed charge design.382

Under the RTP-CCC tariff, fixed charges recover all residual costs—that is, pri,t,φ = 0∀i, t—383

and are equal for all customers—that is, Fi,φ = Fj,φ∀i, j. However, under the RTP-CCC-APD384

tariff, fixed charges are scaled by a customer’s peak demand. That is, Fi,φ = x̂i ∗ Rr∑
i x̂i

, where385

x̂i is customer i’s peak demand throughout the year, given by:386

Edefault
i,φ = Fi,φ +

∑
t

(
(pei,t + pri,t,φ)(xi,t − gi,t,φ)

)
,

ERTP−CCC
i,φ &ERTP−CCC−APD

i,φ = Fi,φ +
∑
t

(
(pei,t + pccci,t )(xi,t − gi,t,φ)

)
. (7)

Figure 4 shows the change in average expenditures for each income quintile as the penetration387

of solar PV increases under ComEd’s default (flat) tariff. The results demonstrate a clear388

trend: as solar PV adoption increases, bills increase on average for low-income customers389

and decrease on average for high income customers. Appendix 6.2 contains the sensitivity390

results for the various parameters discussed herein. In all of the sensitivity cases explored,391

average expenditures for the bottom income quintile increase.392

In this case, we update only pri,t,φ as φ increases, holding Fi,φ constant. The results in Figure 4393

are driven in part by an increase in pri,t,φ as net demand falls, and in part by the fact that394

low-income customers represent a small fraction of PV adopters. Figure 5 highlights the395

increase in the volumetric charge for residual cost recovery as PV penetration increases. The396

per-kWh charge increases by over 200% at 75% solar penetration.397
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Figure 4: Average Change in Annual Expenditures By Income Quintile
Default (Flat) Tariff

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.

Figure 4 masks two trends: first, that there is a cost shift between adopters and non-adopters398

within each income quintile. Second, that higher-income customers tend to consume more399

energy and thus offset a larger share of revenues as adoption increases. Figure 6 displays the400

average bill impact by income quintile for adopters (dashed lines) and non-adopters (solid401

lines). Given the assumption about κ and the fact that higher-income customers consume402

more power on average, we see larger per-customer savings for high income customers than403

low-income customers.15
404

The impact of changing the formula for κ (the size of the PV unit adopted by each customer)405

is relatively straightforward: as the average κ increases, the trends depicted in Figures 4 and406

6 should accelerate. That is, net demand will fall faster as a function of solar penetration407

(φ). In other words, the bills for non-adopters will increase and the bills for adopters will408

fall more as κ increases.409

15This is likely a reasonable assumption given the tendency for high income customers to live in larger
houses, use more appliances like air conditioning, etc.
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Figure 5: Change in The Volumetric Charge for Residual Cost Recovery
Default (Flat) Tariff

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.

These same trends do not hold for efficient tariffs—that is, for the RTP-CCC and RTP-410

CCC-APD tariffs. Figure 7 demonstrates the average change in expenditures by income411

quintile for the tariffs with efficient residual cost recovery: RTP-CCC and RTP-CCC-APD.412

All income quintiles benefit on average as solar PV penetration increases, as there is no413

change in Fi,φ or pri,t,φ. Solar adopters save money by decreasing their energy costs and414

non-adopters are not impacted.415

Transitioning rate design is not without its impact. The RTP-CCC tariff recovers all residual416

costs through uniform fixed charges (i.e. every customer faces the same fixed charge). The417

RTP-CCC-APD tariff recovers all residual costs through fixed charges that scale according418

to a customer’s annual peak demand. The result is that low-income customers would face a419

bill increase under the RTP-CCC tariff and a decrease under the RTP-CCC-APD tariff.420

Figure 8 and 9 compares the average total annual expenditures as solar penetration (φ)421

increases under the default (flat) tariff and the RTP-CCC and RTP-CCC-APD tariffs. In422

each Figure, the solid line represents expenditures under the default tariff, while the dashed423
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Figure 6: Average Change in Annual Expenditures By Income Quintile: Adopters vs. Non-
Adopters
Default (Flat) Tariff

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.

line represents expenditures under the RTP-CCC and RTP-CCC-APD tariffs respectively.424

At low solar penetrations, expenditures for low-income customers are higher under the RTP-425

CCC tariff than under the default tariff. However, as penetration increases, we see that426

low-income expenditures are lower under the RTP-CCC tariff than under the default tariff.427

Under the RTP-CCC-APD tariff, low-income customer expenditures are lower in all cases.428
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Figure 7: Average Change in Annual Expenditures By Income Quintile
RTP-CCC and RTP-CCC-APD Tariffs

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.
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Figure 9: Total Expenditures vs. φ: Flat and RTP-CCC-APD Tariffs

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.

One of the core arguments for maintaining time invariant, volumetric tariffs like the default429

(flat) tariff studied here is that such tariffs are believed to protect low-income and other430

vulnerable customers. For example, the National Consumer Law Center, a non-profit ded-431

icated to “advancing fairness in the marketplace for all,” states plainly that “high utility432

fixed charges harm low-income, elders and households of color” (National Consumer Law433

Center, 2016). It is possible to design progressive fixed charges that do not harm vulnerable434

customers. Further, what this section demonstrates is that, as rooftop solar PV penetration435

increases, rates with volumetric residual cost recovery do not necessarily protect low-income436

customers. In fact, low-income customer expenditures may be higher under tariffs with437

volumetric charges for residual cost recovery than under tariffs that recover residual costs438

through fixed charges as PV penetration increases.439
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4 The Distributional Impacts of Rate Design with So-440

lar PV Adpotion:441

Marginal Network Cost Cases442

The previous section demonstrated the potential distributional impacts of distributed solar443

PV adoption under the assumption that zero percent of network costs are marginal. However,444

in practice, some portion of distribution network costs may be marginal in the long run, as445

highlighted in Section 2.2. In fact, some analysts have argued that distributed solar PV does446

not in fact create any cost shifts, as distributed solar is reducing system costs.16 In this447

section, we explore the potential distributional impacts of a tariff that includes a charge for448

marginal network capacity and model the potential for distributed solar to impact the costs449

of distribution network capacity and losses.450

We begin by exploring the potential impact of solar deployment on distribution network451

capacity costs and losses. We then explore the results of a tariff that incorporates these452

potential impacts. We then model the climate and health values of avoided emissions. We453

conclude with a discussion of how these potential benefits should be considered in light of454

the findings in Section 3455

4.1 Distribution Network Capacity Cost Impacts456

If solar PV reduces demand during coincident peaks, this implies that future network costs457

are reduced. If solar PV increases network loading during coincident peaks, solar PV drives458

costs. We calculate the impact of solar PV in reducing or driving network peaks per-kW,459

referred to as scpφ,z, by multiplying the marginal network value by solar production. In cases460

where solar PV injections are driving peak loading, the marginal cost is negative (i.e. PV is461

driving costs). This is depicted in Equation 8:462

scpφ,z =
∑
t

(scpt,φ,z), where scpt,φ,z =

g̃tp
cp
t,z,φ if

∑
i(xi,t,z − gi,t,z,φ) ≥ 0

−g̃tpcpt,z,φ if
∑

i(xi,t,z − gi,t,z,φ) < 0.
(8)

Figure 10 shows the distribution of network capacity values per kW of rooftop solar (scpφ,z)463

across the various zip codes in our sample. The black “violins” in the plot show the distri-464

bution of values over the zip codes, the red dots show the mean value, and the red bars show465

16See, for example, Whited et al. (2017) pages 156-164.
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the standard deviation of the values. Several trends are immediately clear.466

1. There is wide variance in the distribution of network values, due in large part to the467

alignment of the solar PV production profile with the hours of peak net demand.468

2. The marginal network capacity benefit decreases as solar PV penetration increases due469

to the shift in coincident peaks (see Figure 2).470

3. As solar penetration increases, peak network loading periods in some regions begin471

being driven by solar PV injections, rather than demand withdrawals. This implies472

that solar PV is increasing network costs at these penetrations.473

At low solar penetrations, solar PV in some areas exhibits very high network capacity value,474

while in others it exhibits no or very low value. This is consistent with other estimates of475

network capacity cost impacts of rooftop solar PV (Cohen et al., 2016). The reason for the476

non-linearity exhibited in Figure 10 is that, in some areas, once the number of households477

in that area with solar PV passes a certain threshold, nearly all of the peak loading periods478

begin being driven by peak injections. Thus, solar may go from driving marginal network479

cost reductions to driving large marginal network cost increases with small changes in solar480

penetration.481

Figure 11, along with Figure 2, provides intuition as to why we see a large distribution of482

potential network values of rooftop solar. Figure 11 plots the capacity factor17 of the solar483

PV in three areas during the areas coincident peak periods. We see first that the capacity484

factor is not the same across all areas—that solar PV in some areas is producing a larger485

portion of its rated capacity during the peak demand periods at low penetrations in some486

areas than in others. Further, we see that as penetration increases to moderate penetrations,487

the capacity factor falls across the board. This is due to the fact that solar PV shifts the488

peak net demand period away from peak solar production periods (i.e. earlier in the morning489

or later in the day). Finally, in some areas, in this case zip 60053, capacity factor increases490

dramatically at high penetrations. This is due to the fact that solar PV is now driving peak491

network loading, and is producing at 50% of its rated capacity during these injection periods.492

17The U.S. Nuclear Regulatory Commission provides a succinct definition of capacity factor: “The ratio
of the available capacity (the amount of electrical power actually produced by a generating unit) to the
theoretical capacity (the amount of electrical power that could theoretically have been produced if the gen-
erating unit had operated continuously at full power) during a given time period.” (U.S. Nuclear Regulatory
Commission, 2019).
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Figure 10: Estimation of network capacity value of distributed solar PV

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.

4.2 Distribution Network Ohmic Losses Impacts493

In this section we calculate the impact of solar PV in reducing or driving ohmic losses in494

the distribution network on per-kW basis, referred to as slφ,z. We multiply the marginal loss495

value by solar production. In cases where solar PV injections are driving peak loading, the496

marginal cost is negative (i.e. PV is driving losses). This is depicted in Equation 9:497

slz,φ,l̄ =
∑
t

(
g̃tp

e
i,t

∂lt,z,φ,l̄
∂It,z,φ

)
. (9)

Figure 12 shows the magnitude of cost reductions from avoided ohmic losses in the distribu-498

tion network as the penetration of solar PV increases for both the 4% and 7% average losses499

cases. In the plot, the dots are the mean values and the bars are the standard deviations.500

The results follow the logic of the results shown in Section 4.1. At low penetrations, rooftop501

solar PV reduces total flows over the distribution network, reducing costs by avoiding dis-502

tribution losses. However, at high penetrations, PV injections begin driving increased losses503
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Figure 11: Capacity factor of rooftop solar PV during peak network loading periods for three
selected zip codes

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.

and costs.504

4.3 Distributional Impacts with Marginal Network Costs505

In order to analyze the potential distributional impacts of a tariff with a marginal network506

capacity charge, we create a tariff combining the marginal energy and losses, network capac-507

ity, and generation capacity charges. We then recover all residual costs through a uniform508

fixed charge. We calculate expenditures for each customer according to Equation 10, given509

by:510

ERTP−CCC−CP
i,z,φ = Fi,φ +

∑
t

(
(pei,t

(
1 +

∂lt,z,φ,l̄
∂It,z,φ

)
+ pcpt,z,φ + pccci,t )(xi,t − gi,t,φ)

)
. (10)

Figure 13 displays the average change in annual expenditures by income quintile under the511
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Figure 12: Estimation of cost impact distribution loss avoidance value of distributed solar
PV

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case.

RTP-CCC tariff with a coincident peak network capacity charge (i.e. the RTP-CCC-CP512

tariff). We see again that an efficient tariff prevents cost shifts, thus decreasing average513

expenditures for each income quintile. The change in slope of savings at high penetrations514

highlights the fact that solar PV begins to drive costs at high penetrations.515

Figure 14 shows the changes in average expenditures by income quintile for adopters and516

non-adopters of PV. We see again that efficient tariffs, at low penetrations, do not shift517

costs between adopters and non-adopters as PV penetration increases. We also see that the518

average cost savings for adopters falls as PV penetration increases, highlighting the declining519

marginal value of solar PV. As PV adopters begin increasing peak network loading, costs520

fall for non-adopters. This is due to the fact that marginal increases in consumption during521

periods of peak network injections decreases costs. Note that PV adopters still reduce their522

energy bills on average at high PV penetrations due to the energy and generation capacity523

value of the PV installations. This implies that efficient tariffs do not fully eliminate the524

economic case for PV adoption, even at high penetrations (that is, solar adopters still save525
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Figure 13: Average Change in Annual Expenditures By Income Quintile
RTP-CCC-CP Tariff

κ: Peak Demand. Azimuth: 180. Adoption Probabilities: 2016 Distribution. l̄ = 4%.

money on average at very high penetrations).526

Finally, Figure 15 shows the change in expenditures relative to the flat tariff. We see that527

average expenditures under an efficient tariff with a coincident peak network capacity charge528

are roughly equivalent to expenditures under the default tariff. Further, as with the RTP-529

CCC and RTP-CCC-APD tariffs, RTP-CCC-CP tariff leads to lower costs for lower income530

customers as PV penetration increases.531

4.4 Estimating avoided emissions values532

Sections 4.1 and 4.2 explored rooftop solar PV’s potential impact on network capacity and533

losses costs. In addition, rooftop solar PV (and other zero-emissions resources) can offset534

emissions of greenhouse gas and other pollutants. In this section we estimate the dollar value535

of avoiding emissions using the marginal emissions data introduced in Appendix 6.1.4. The536

dollar value of emissions avoided per kW of solar PV adopted, denoted sem, is calculated as:537
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Figure 14: Average Change in Annual Expenditures By Income Quintile: Adopters vs. Non-
Adopters
RTP-CCC-CP Tariff

κ: Peak Demand. Azimuth: 180. Adoption Probabilities: 2016 Distribution. l̄ = 4%.

sem =
∑

t(g̃tp
em
t ).538

Figure 16 displays the marginal value of avoided emissions per kW of solar PV added, broken539

out by the damages model used. The black lines on each bar represent the residual cost shift540

for the zero-solar penetration case (φ = 0, pcpt,z,φ = 0), as discussed in Section 3.18 We see541

that the value of avoided emissions is greater than the value of the cost shift in every case.19
542

There are many programs federally and within Illinois intended to spur the deployment of543

low-carbon technologies like solar PV. For example, the U.S. federal government provides an544

investment tax credit and accelerated depreciation for solar PV. Illinois also has a renew-545

able portfolio standard intended to spur solar and wind deployment and remunerate these546

resources for their emissions avoidance values. Thus, the fact that the emissions avoidance547

18The cost shift does not depend on the damages model used.
19This confirms the findings from Borenstein and Bushnell (2018). Using a different approach than that

discussed herein, Borenstein and Bushnell (2018) finds that the average value of the cost of marginal emissions
exceeds the average volumetric residual cost recovery charge in the Chicago, IL area.
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Figure 15: Total Expenditures vs. φ: Flat and RTP-CCC-CP Tariffs

κ: Peak Demand. Azimuth: 180. Adoption Probabilities: 2016 Distribution. l̄ = 4%.

value exceeds the residual cost shift does not imply that solar PV is under-valued in Chicago.548

Answering this question would require a more holistic review of the magnitudes of the various549

support programs for solar PV.550

The data presented in Figure 16 provide a cautionary note. First, that PV adoption in551

Chicago under net metering may drive cost shifts, but may not necessarily be economically552

inefficient on average. That is, the average private marginal cost of energy may not exceed553

the average social marginal cost of energy. However, net metering schemes may still drive554

cost shifts between adopters and non-adopters as the utility changes rates to recover its555

residual costs. Second, improving the efficiency of residual cost recovery mechanisms could556

reduce welfare if the cost of energy does not fully internalize the cost of externalities. This557

implies that in a second best world without carbon pricing, regulators may face tradeoffs558

between economic efficiency and distributional equity.559
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Figure 16: Estimation of avoided emissions value of distributed solar PV

κ: Peak Demand PV Case. φ = 0.

4.5 Interpreting the cost impacts of rooftop solar PV in the con-560

text of residual cost shifts561

Given the prevalence of net metering programs in the U.S., it is worthwhile to ask how well562

PV remuneration under net metering programs matches PV remuneration under an optimal563

tariff. Figure 17 compares the sum of scpz,φ and sl
z,φ,l̄

—the network capacity and losses cost564

reductions per kW of solar—with the total residual cost shifts under the assumption that565

pcpt,z,φ = 0. In Figure 17, the black lines show the distribution of network capacity and losses566

cost impacts across “feeders” (zip codes), while the blue vertical lines show the residual567

cost shifts at 0%, 30%, and 60% solar penetration. We see that, as PV’s network cost568

impacts shrink, the potential cost shift rises. We also see that even at low penetrations,569

a net metering program in Chicago likely over-remunerates rooftop solar PV for network570

cost reductions. This latter point implies that, even under aggressive assumptions about the571

potential network cost reductions of solar PV—that is, even under the assumption that 100%572

of distribution network costs are marginal—solar PV adoption under net metering schemes573

will lead to cost shifts.574
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Figure 17: Residual cost shift vs. distribution network value

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case. l̄ = 7%.

The relationship between network cost reductions and PV cost shifts under net metering will575

vary by region and utility. However, in general, unless the magnitude of PV cost reductions576

perfectly matches the volumetric price for residual cost reduction by random chance, net577

metering schemes are likely to create cost shifts between PV adopters and non-adopters.578

5 Conclusions579

This paper analyzes the potential distributional impacts of solar PV adoption in the presence580

of inefficient and efficient rate designs. We leverage a data set of electricity consumption581

for 100,170 consumers, roughly 60,000 of which live in single-family homes, and data on the582

income trends of distributed solar PV adoption. We simulate PV adoption among single-583

family homes, accounting for the propensities of customers in different income quintiles to584

adopt solar. We build a simple model of utility costs to analyze the changes in customer585

expenditures by income quintile as rooftop solar PV adoption increases. We first model the586

distributional impacts of PV adoption assuming that distributed PV cannot reduce network587
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costs before modeling the distributional impacts assuming that all distribution network costs588

are marginal in the long run according to coincident peak demand.589

We find that rooftop solar PV has the potential to create substantial distributional impacts590

in the presence of tariffs that inefficiently recover residual costs through volumetric (i.e. per-591

kWh) charges. Rooftop solar PV adoption reduces net demand (demand minus generation).592

When residual network and policy costs are recovered through volumetric charges, this re-593

duction in net demand creates an under recovery of costs; charges for residual cost recovery594

must increase to ensure cost recovery. This implies that, in the standard electricity tariff,595

the bills of non-adopters must increase. Given that solar PV adopters tend to be affluent596

(see Figure 18), average expenditures across all customers in the top three income quintiles597

decrease, while average expenditures across all customers in the bottom two income quintiles598

increase under rates with volumetric residual cost recovery. Average annual expenditures599

across the entire income quintile20 for the lowest 20% of incomes increase by 6%, 18%, and600

46% at 25%, 50%, and 75% rooftop solar penetrations, respectively. Average annual expen-601

ditures for non-adopters in the lowest 20% of incomes increase by 13%, 35%, and 80% at602

25%, 50%, and 75% rooftop solar penetrations, respectively. Meanwhile, customers in the603

top income quintile that adopt solar nearly entirely eliminate their contributions to residual604

cost recovery. This very substantial impact may be occurring in some locations today, as605

rooftop solar penetration has already reached 25+% in some markets, including Hawaii and606

parts of Australia.607

This cost shift does not occur under tariffs with efficient network cost allocation and residual608

cost recovery. When residual costs are recovered through fixed charges, solar PV adopters609

reduce their expenditures on energy and marginal generation costs, but do not shift residual610

costs to other customers. As a result, average expenditures across each income quintile611

decrease as penetration increases. This is the result of a decrease in expenditures for PV612

adopters and no change in expenditures for non-adopters. This holds true under both the613

zero marginal network costs and the 100% marginal network costs cases.614

This paper demonstrates that at moderate to high penetrations of rooftop solar PV, ex-615

penditures may be higher for low-income customers under rates with volumetric residual616

cost recovery than under rates with uniform fixed charges for residual cost recovery. One of617

the primary arguments against increasing fixed charges for residual cost recovery has been618

the potential distributional impacts of the increased fixed charge. The results in this paper619

challenge this narrative.620

20That is, including both adopters and non-adopters in the bottom income quintile.
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The final issue analyzed in this paper—the potential impacts of a coincident peak demand621

charge for marginal network capacity and an energy charge adder for marginal distribution622

network losses—further highlights the potential benefits of efficient rate design. We first623

design marginal network capacity and distribution loss charges. We then calculate: 1) the624

potential network capacity and losses impacts of solar PV under such charges, and 2) the625

distributional impacts of a tariff incorporating these charges as PV penetration increases. We626

find that distributed PV can substantially reduce the costs of network capacity and losses in627

some areas at low to modest penetrations. However, we find large variance in the distribution628

of these cost reductions, and find that rooftop solar PV at high penetrations may increase629

rather than reduce costs. We then show that an efficient rate design that incorporates these630

marginal charges results in significantly lower expenditures for low-income customers at high631

PV penetrations than does ComEd’s default tariff. Additionally, at low PV penetrations,632

there is almost no change in the average expenditures of the bottom income quintile under633

these charges.634

These findings have important implications for rate design. First, that the potential for PV635

adoption threatens to reverse the redistributional effects of volumetric rates for residual cost636

recovery. New solutions are needed. Second, that rates that better reflect the time- and637

location-varying value of energy may be more distributionally equitable than alternatives as638

the power system incorporates higher penetrations of DERs. Finally, rates that better reflect639

system costs create opportunities for adopters of DERs like rooftop PV to save money by640

lowering system costs. These efficient rates avoid the potentially undesirable distributional641

impacts of net metering under today’s time invariant, predominately volumetric rates.642
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Equitable, and Efficient Tariffs in the Presence of Distributed Energy Resources,” Working691

Paper 2018-012, MIT Center for Energy and Environmental Policy Research.692

California Public Utilities Commission (2018): “Residential Rate Reform / R.12-06-693

013,” http://www.cpuc.ca.gov/General.aspx?id=12154, accessed: 2019-05-12.694

Chawla, M. and M. G. Pollitt (2013): “Energy-efficiency and environmental policies695

& income supplements in the UK: evolution and distributional impacts on domestic energy696

bills,” Economics of Energy & Environmental Policy, 2, 21–40.697

Coase, R. H. (1946): “The Marginal Cost Controversy,” Economica, 13, 169–182.698

Cohen, M., P. Kauzmann, and D. Callaway (2016): “Effects of distributed PV gener-699

ation on California’s distribution system, part 2: Economic analysis.” Solar Energy, 128,700

139–152.701

36

http://www.cpuc.ca.gov/General.aspx?id=12154


Commonwealth Edison (2011): “PopFacts - Demographic Snapshot – ComEd Northern702

Illinois Service Territory,” https://www.comed.com/SiteCollectionDocuments/ComEd_703

Service_Territory_Demographics_Update_122311.pdf, accessed: 2018-10-09.704

Feger, F., N. Pavanini, and D. Radulescu (2017): “Welfare and redistribution in705

residential electricity markets with solar power,” Working paper, CEPR Discussion Paper706

No. DP12517.707

Gerarden, T. (2017): “Demanding innovation: The impact of consumer subsidies on708

solar panel production costs,” Working paper, Technical report, Working paper, Harvard709

University.710

Heo, J., P. J. Adams, and H. O. Gao (2016a): “Public health costs of primary PM2.711

5 and inorganic PM2. 5 precursor emissions in the United States,” Environmental science712

& technology, 50, 6061–6070.713

——— (2016b): “Reduced-form modeling of public health impacts of inorganic PM2. 5 and714

precursor emissions,” Atmospheric environment, 137, 80–89.715

Holmgren, W. F., C. W. Hansen, and M. A. Mikofski (2018): “pvlib python: a716

python package for modeling solar energy systems,” Journal of Open Source Software, 3.717

Horowitz, S. and L. Lave (2014): “Equity in Residential Electricity Pricing.” The Energy718

Journal, 35, 1–23.719

Houthakker, H. S. (1951): “Electricity Tariffs in Theory and Practice,” The Economic720

Journal, 61, 1–25.721

Hummon, M., P. Denholm, and R. Margolis (2013): “Impact of photovoltaic orienta-722

tion on its relative economic value in wholesale energy markets,” Progress in Photovoltaics:723

Research and Applications, 21, 1531–1540.724

Illinois Commerce Commission (2014): “ICC Docket No. 13-0506, Final Order725

at 17,” https://www.icc.illinois.gov/downloads/public/edocket/367604.pdf, ac-726

cessed: 2019-12-09.727

Jessoe, K. and D. Rapson (2014): “Knowledge Is (Less) Power: Experimental Evidence728

from Residential Energy Use.” American Economic Review, 104, 1417–1438.729

Johnson, E., R. Beppler, C. Blackburn, B. Staver, M. Brown, and D. Matisoff730

(2017): “Peak shifting and cross-class subsidization: the impacts of solar PV on changes731

in electricity costs,” Energy Policy, 106, 436–444.732

37

https://www.comed.com/SiteCollectionDocuments/ComEd_Service_Territory_Demographics_Update_122311.pdf
https://www.comed.com/SiteCollectionDocuments/ComEd_Service_Territory_Demographics_Update_122311.pdf
https://www.comed.com/SiteCollectionDocuments/ComEd_Service_Territory_Demographics_Update_122311.pdf
https://www.icc.illinois.gov/downloads/public/edocket/367604.pdf


Levinson, A. and E. Silva (2019): “The Electric Gini: Income Redistribution through733

Energy Prices,” Working paper, Georgetown University.734

Muller, N. Z. (2014): “Boosting GDP growth by accounting for the environment,” Sci-735

ence, 345, 873–874.736

National Consumer Law Center (2016): “Utility Rate Design,” https://www.nclc.737

org/issues/energy-utilities-a-communications/utility-rate-design.html, ac-738

cessed: 2019-04-13.739

Nelson, T., S. P., and S. Kelley (2011): “Australian Residential Solar Feed-in Tariffs:740

Industry Stimulus or Regressive form of Taxation.” Economic Analysis and Policy, 41,741

113–129.742

New York Department of Public Service (2019): “CASE 15-E-0751 -743

In the Matter of the Value of Distributed Energy Resources. Order Regarding744

Value Stack Compensation.” https://www.nyserda.ny.gov/-/media/NYSun/files/745

Updated-Value-Stack-Order-2019-04-18.pdf.746
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6 Appendices793

6.1 Data794

6.1.1 Half-Hourly Household Electricity Metering Data795

The residential electricity consumption data used in this work come from Commonwealth796

Edison (hereafter: ComEd).21 The data contain one full year of anonymous electricity797

consumption data measured half-hourly for 100,170 residential customers for 2016. The data798

state each customer’s housing type (single-family or multi-family), heating type (electric or799

non-electric), and 9-digit zip code, indicating the customer’s geography. To avoid providing800

identifying information about any given customer, ComEd applies a “15/15” rule22 that801

removes any customers or zip code areas that:802

1. contain fewer than 15 customers per customer type, or803

2. contain one customer that represents more than 15% of the total consumption of the804

customers of that type.805

This removes very large consumers from our sample. Given that the data are primarily urban806

and residential, should have limited overall impact on our findings. In addition to ComEd’s807

data cleaning for anonymity, we perform our own data cleaning to ensure the integrity of our808

sample. The data obtained from ComEd contained data on 344,717 customers. However,809

consumption observations for many of these customers was missing or potentially flawed.810

Only 278,821 customer have a complete time series of observations. We removed all customers811

without complete time series. The sum of the half-hourly consumption observations did not812

match the reported sum of daily consumption for some customers. We removed all customers813

with at least one case of a deviation of 5% or more between the reported daily energy814

consumed and the sum of the half-hourly consumption observations. The demographics of815

the final sample roughly matched that of the original sample, implying that the data cleaning816

effort did not meaningfully skew the data.817

Table 2 summarizes the breakdown of customer types in the sample. The distribution of818

housing types in our sample is consistent with the distribution within the broader ComEd819

service territory: 61.2% of the customers in our sample live in single-family homes compared820

21Note that this is the same dataset that underpins Burger et al. (2020).
22See Illinois Commerce Commission (2014).

40



to 58.7% in the ComEd service territory, and 38.7% of our sample live in multi family homes821

compared to 40.2% in the ComEd service territory (Commonwealth Edison, 2011).822

Table 2: Breakdown of customer types

Heating Type
Single-Family Multi-Family

Number Percent Number Percent

Electric Space Heat 96 0.01% 3,987 4.1%
No Electric Space Heat 60,095 61.2% 34,017 34.6%

We combine the consumption data with socioeconomic data from the 2016 American Com-823

munity Survey (U.S. Census Bureau, 2018). The most detailed geography for which the824

American Community Survey publishes public data are the Census Block Group (CBG). In825

total, our sample contains customers in 2,315 CBGs. The geographic boundaries of CBGs826

are not the same as those of 9-digit zip-code areas. Thus, to match census data to our827

household-level consumption data, we have to match CBGs to zip codes. We use a data828

set from Melissa Data for the matching.23 1,975 customers are removed from the sample829

while merging the two geographic data sets because the zip codes do not have corresponding830

CBGs.831

Table 3 compares the demographics of the customers in our sample with that of the full832

ComEd service territory. Our sample contains a disproportionate amount of high- and low-833

income customers relative to the full ComEd service territory. The demographics of the834

customers in our sample are otherwise roughly consistent with the broader ComEd service835

territory.836

23https://www.melissa.com/
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A common method in analyzing distributional impacts is to analyze household budget data837

rather than income data (Baker et al., 1989; Baker and Blundell, 1991; Chawla and Pollitt,838

2013). In many cases, low-income households may have high wealth or temporary lapses in839

income.24 Budget or expenditure data often capture these facts with more fidelity. While840

we focus on income data, incorporating expenditure or budget data is a promising direction841

for future research.842

This paper uses three additional sources of data. First, aggregate data on the income trends843

of solar PV adopters. Second, solar insolation data and a solar PV production model used844

to produce PV generation profiles. Finally, estimates of the marginal emissions and social845

damages of these emissions for the Chicago area.846

Each customer is assigned the median income of the census block group within which that847

customer lives. This likely understates the distributional impacts analyzed herein; within848

each census block group, wealthy customers are more likely to adopt solar.25
849

Within the consumption data, we focus primarily on single-family homes. The vast majority850

(more than 99%) of rooftop solar PV adopters live in single-family dwelling, most often851

owner occupied dwellings (Barbose et al., 2018). We assign customers to income quintiles852

according to the median income of the census block group within which they live. Table 4853

contains the breakdown of the number of single-family homes in our sample by income854

quintile. In Table 4, the 1st Quintile represents the bottom 20% of incomes, and the 5th855

Quintile represents the top 20% of incomes. The income quintiles are established based on856

the entire 100,170 customer sample, not on the subset of single-family homes; this explains857

why the number of customers in each income quintile (NQ) are not equal.858

6.1.2 PV Adoption Income Trend Data859

The Lawrence Berkeley National Laboratory collected household-level income data for more860

than 781,000 solar PV adopters across 13 U.S. states between the years 2000 and 2016861

(Barbose et al., 2018). These data are summarized in Figure 18. In Figure 18, the 0 to 20th862

Percentile represents the bottom 20% of incomes, and the 80 to 100th Percentile represents863

the top 20% of incomes. The income distribution data are relatively consistent across time864

and states. Through 2016, the largest share of PV adoption in the bottom income quintile865

was 8% (in Nevada), while the lowest share was 5% (in Washington D.C.). The average866

share of adoption in the bottom two income quintiles across all states through 2016 was867

24For example, high earners may spend time in graduate school.
25See Barbose et al. (2018) page 20 for a discussion of this fact.
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roughly 19%. In 2016 the average share of adoption in the bottom two income quintiles868

across states was 21%. Phrased differently, a customer in the top three income quintiles was869

roughly four times more likely to adopt solar than a customer in the bottom two income870

quintiles. While there is greater variation across states in the share of adoption in the top871

three income quintiles, capturing this variation is less critical for assessing the distributional872

impacts between higher and lower income quintiles. The distribution of PV adoption between873

the top three income quintiles has remained nearly constant since 2000, while the distribution874

between quintiles has changed slightly. Due to the relatively consistent income distributions875

across time and location, we feel the national average income trends are appropriate for the876

analysis in this paper.877

Figure 18: Income Distribution of Rooftop Solar Adopters by Installation Year

Data source: Barbose et al. (2018)

While the share of adoption in the top three income quintiles has remained relatively constant878

since 2000, we do see two distinct temporal trends in Figure 18. First, between the year879

2000 and 2008, the share of PV adoption in the top three income quintiles grew from 79%880

to 84%. Second, between 2008 and 2016, the share of PV adoption in the top three income881

quintiles fell back to 79%. In the base case analysis in Section 3 (the 2016 Distribution882

case), we use the 2016 distribution of PV adoption. We then perform two sensitivities. In883
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the “2008 to 2016 Trend” sensitivity, we linearly extrapolate the 2008 to 2016 changes in884

the adoption rates in the bottom two income quintiles to 2040, and assume that the top885

three income quintiles are all equally likely to install solar.26 In the “2000 to 2016 Trend”886

sensitivity, we linearly extrapolate the 2000 to 2016 changes in the adoption rates across all887

income quintiles to 2040. These data are represented in Table 5. The interpretation of these888

data are as follows: in the 2016 Distribution case, for every 100 solar adopters in 2016, we889

would expect roughly 25 to be in the top income quintile, 8 to be in the bottom income890

quintile, and so on. We describe the use of these data in more detail in Section 2.891

6.1.3 Solar PV Simulation and Production Data892

The second primary source of data used in this analysis are solar insolation and weather893

data and a solar PV production model. The design and specifications of the model used894

to translate solar insolation and weather data into solar PV production is outside of the895

scope of this thesis. The model used, pvlib python, is a Python-based tool developed and896

extensively vetted by Sandia National Laboratories (Holmgren et al., 2018).27 The model897

uses solar insolation data and weather (e.g., temperature, wind speed, etc.) data and PV898

system parameters (e.g., module efficiency, azimuth, inverter sizing, etc.) and estimates the899

output of the specified solar PV system. We modeled three systems with different azimuths900

(degree to which the panels are facing south). The output of the model with an azimuth of901

180 degrees is shown in Figure 19.902

The PV model requires parameters about system performance. We use default values for a903

typical residential installation, while specifying the azimuth and tilt. The major parameters904

of the system are documented in Table 6.28
905

26If you extend the ‘08 to ‘16 trend through 2040 for the top income quintile, the probability of adoption
becomes negative. This is obviously not a useful result, so we modify the probabilities.

27pvlib python is a project of the Sandia National Laboratories PV Performance Modeling Collaborative.
The formulation of pvlib has been vetted over decades by researchers at Sandia and elsewhere, as well as
by practitioners. Holmgren et al. (2018) contains information about the model as well as links to further
documentation. More model detail can be found at https://pvlib-python.readthedocs.io/en/latest/
and https://github.com/pvlib/pvlib-python. Patrick Brown provided the IPython notebook containing
the pvlib model that we used in this paper. The documentation of Patrick’s version of the pvlib model can
be found in the forthcoming paper, Brown and O’Sullivan (2019).

28The model contains many other default parameters, a detailed accounting of which is outside the scope
of this paper.
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Figure 19: Solar PV Production for Chicago, IL in 2016

Chicago, IL. 2016. Azimuth = 180, Tilt = Latitude.

6.1.4 Emissions Factor Data906

The final source of data used in this paper is marginal emissions and health damages data.907

Most power system operators do not provide data on the fuel type and plant information of908

the marginal plant in each hour. Ex-post estimation of the marginal emissions of a system at909

any given point in time is therefore challenging. We use marginal emissions data provided by910

the Center For Climate and Energy Decision Making at Carnegie Mellon University (Azevedo911

et al., 2017). We use this marginal emissions data to calculate the potential climate and912

health benefits of the solar PV adoption simulated herein.913

The data set includes marginal emissions factors by time of day and season of year29 for SO2,914

NOx, PM2.5, and CO2. The data is provided at the North American Electric Reliability915

Corporation region level. Chicago, IL is in the RFC region, an area that covers parts of916

Illinois and Wisconsin and all of Michigan, Indiana, Ohio, Pennsylvania, West Virginia,917

Delaware, and Maryland. In addition to marginal emissions data, the data set includes918

marginal damages data derived using two models and an assumed $40 per ton price on CO2.919

The damages models used are the AP2 model30 and the EASIUR model31. The two models920

29The breakdown for seasonal factors is: Winter (November through March), Summer (May through
September), and Transition (April and October).

30See Muller (2014)
31See Heo et al. (2016b) or Heo et al. (2016a)
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provide nearly identical results, so this paper uses only the AP2 model. The damages data921

from the AP2 model are visualized in Figure 20. We denote the total marginal cost of922

emissions (including SO2, NOx, PM2.5, and CO2) at any given time as pemt .923

Figure 20: Marginal Damages for the RFC Region in 2016

Data source: Azevedo et al. (2017)

6.2 Sensitivities924

The simulations in this paper required the use of several assumptions. The logic behind925

these assumptions is explained in the main text of the paper. This Appendix demonstrates926

the impacts of the key assumptions on the results. Broadly speaking, the assumptions do not927

impact the key results. That is, under all sets of assumptions, rooftop PV adoption under928

inefficient rates increases average expenditures for the lowest income quintile, while efficient929

rates do not. Nonetheless, the sensitivities in this Appendix provide additional color and930

robustness to the results presented in the main text of the paper.931

This Appendix includes sensitivities on the following assumptions:932

1. The solar adoption probabilities—that is, the likelihood that a customer in each income933
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quintile will adopt solar PV at each penetration level.934

2. kappa: the size of PV systems adopted by each individual.935

3. The azimuth of the solar PV system adopted by each customer—that is, whether the936

systems are facing due south, southeast, or southwest.937

4. The number of critical peak hours that drive network costs used in the RTP-CCC-CP938

tariff.939

6.2.1 Sensitivities to solar adoption probabilities940

One of the major factors underpinning the distributional impacts of inefficient rates and941

rooftop solar PV adoption is the distribution of incomes of solar PV adopters. As shown942

in Figure 18, the lions share of PV adoption happens in the top three income quintiles.943

However, the exact breakdown of adoption between income quintiles has not been constant944

over time. The results in the main text of this paper assume that the 2016 distribution of945

solar PV adoption remains constant over time. The sensitivities presented here change that946

assumption.947

In the base case analysis in Section 3 (the 2016 Distribution case), we use the 2016 distri-948

bution of PV adoption. We then perform two sensitivities. In the “2008 to 2016 Trend”949

sensitivity, we linearly extrapolate the 2008 to 2016 changes in the adoption rates in the950

bottom two income quintiles to 2040, and assume that the top three income quintiles are all951

equally likely to install solar.32 In the “2000 to 2016 Trend” sensitivity, we linearly extrapo-952

late the 2000 to 2016 changes in the adoption rates across all income quintiles to 2040. This953

data is represented in Table 5.954

There are of course infinite possible distributions of adoptions across income quintiles. A955

revolution in financing or business models or a concerted policy effort may increase the like-956

lihood of rooftop PV adoption in the bottom income quintile beyond what is modeled here.957

However, the distributions shown here cover reasonable linear extrapolations of temporal958

trends and likely cover a reasonable range of likely outcomes.959

Figure 21 shows the change in average expenditures for each income quintile as the pen-960

etration of solar PV increases under ComEd’s default (flat) tariff. In this case, average961

expenditures for the lowest income quintile increase, but not as substantially as they do un-962

32If you extend the ‘08 to ‘16 trend through 2040 for the top income quintile, the probability of adoption
becomes negative. This is obviously not a useful result, so we modify the probabilities.
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der the 2016 Distribution Case. However, average expenditures for the second lowest income963

quintile increase far more than under the 2016 Distribution Case.964

Figure 21: Average Change in Annual Expenditures By Income Quintile
Default (Flat) Tariff, Income Trend Sensitivity

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2000 to 2016 Trend
Case.

Figure 22 shows the change in average expenditures for each income quintile as the penetra-965

tion of solar PV increases under ComEd’s default (flat) tariff. In this case, average expendi-966

tures for the lowest income quintile increase more than under the 2000 to 2016 Trend Case,967

but not as substantially as they do under the 2016 Distribution Case. Average expenditures968

for the second lowest income quintile fall, as this income quintile adopts a substantial share969

of total rooftop solar PV.970

There is a crossover point in each income distribution case in which expenditures for low-971

income customers are lower under a tariff with substantial and uniform fixed charges than972

under the default, predominately volumetric tariff. In the 2016 Distribution Case this oc-973

curred at roughly 25% solar PV adoption (see Figure 8). This crossover point occurs at974

roughly 34% in the 2000 to 2016 Trend Case and at roughly 31% in the 2008 to 2016 Trend975

Case. The fact that this occurs in all cases indicates that efforts to increase access to rooftop976
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Figure 22: Average Change in Annual Expenditures By Income Quintile
Default (Flat) Tariff, Income Trend Sensitivity

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2008 to 2016 Trend
Case.

solar PV for lower-income groups may not be able to fully counteract the cost shifting im-977

pacts of rooftop PV adoption under inefficient rates. This is depicted in Figures 23 and978

24.979

Given that efficient rates do not shift costs from solar adopters to non-adopters, the results980

for the efficient rates are not interesting, and We do not include them here.981

6.2.2 Sensitivities to solar PV installation size982

The results in the main text of the paper assume that each customer adopts a solar PV983

system sized to equal their peak demand. That is, if a customer’s peak demand throughout984

the year is five kilowatts, the customer would adopt a five kilowatt33 PV system. The larger985

the PV system, the more kWh the system produces. The more kWh the system produces,986

the larger the cost shift under inefficient rates. The impact of the sizing assumption is987

33Sized according to the peak alternating current (AC) output.
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Figure 23: Total Expenditures vs. φ: Flat and RTP-CCC Tariffs
Income Trend Sensitivity

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2000 to 2016 Trend
Case.

therefore relatively straightforward. If average PV system sizes are smaller, the impact of988

PV adoption under inefficient rates is also smaller. This is depicted in Figure 25.989

Smaller PV system sizes also increases the PV penetration (φ) at which uniform fixed charges990

for residual cost recovery result in lower expenditures for low-income customers than do991

volumetric charges for residual cost recovery. This is depicted in Figure 26.992

Smaller PV system sizes would also increase the PV penetration at which rooftop PV begins993

to increase rather than decrease costs.994

6.2.3 Sensitivities to solar PV systems’ azimuths995

Solar PV system production is maximized when facing true south (roughly a PV system996

azimuth of 180 degrees). The energy output of a PV system with an azimuth of 180◦ will997

peak around solar noon, which is roughly equal to true noon in most locations. The annual998
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Figure 24: Total Expenditures vs. φ: Flat and RTP-CCC Tariffs
Income Trend Sensitivity

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2008 to 2016 Trend
Case.

energy output of PV systems facing southeast (azimuth of 135◦) or southwest (azimuth of999

225◦) will be less than that of systems facing 180◦. The energy output of a PV system facing1000

southeast (azimuth of 135◦) will peak before solar noon, while the energy output of a PV1001

system facing southwest (azimuth of 225◦) will peak after solar noon.1002

The impact of alternative azimuths on total cost shifting is relatively straightforward. Just as1003

in the PV sizing sensitivities, lower aggregate production leads to lower overall cost shifting.1004

However, because peak demand and prices change throughout the day, the impact of azimuth1005

on losses and marginal network capacity costs is less straightforward. This Appendix Section1006

focuses on these latter impacts, as these are the more interesting impacts.1007

Figures 27 and 28 show the distributions of network capacity values per kW of rooftop solar1008

(scpφ,z) across the various zip codes in our sample. The black “violins” in the plot show the1009

distribution of values, the red dots show the mean value, and the red bars show the standard1010

deviation of the values. Comparing the results in these Figures to the results in Figure 10,1011
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Figure 25: Average Change in Annual Expenditures By Income Quintile
Default (Flat) Tariff, PV Size Sensitivity

κ: Annual Consumption PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution
Case.

the impact of azimuth on the potential network cost reduction of rooftop PV becomes clear.1012

The average cost reduction under azimuths of 135◦ is substantially lower (nearly 66% lower)1013

than the average cost reduction under azimuths of 225◦. This is due largely to the fact that1014

residential demand tends to peak well after 12:00PM in Chicago, and thus the maximum1015

coincident demand peaks are more concentrated in these later afternoon hours. This indicates1016

that if planners or developers were interested in maximizing the network cost reduction value1017

of rooftop PV, they would favor west-facing roofs or sites. This is consistent with the existing1018

literature on the value of PV (see, for example, Hummon et al. (2013)).1019

Figures 29 and 30 show the magnitude of cost reductions from avoided ohmic losses in1020

the distribution network as the penetration of solar PV increases for both the 4% and 7%1021

average losses cases. In the plot, the dots are the mean values and the bars are the standard1022

deviations. Comparing the results in these Figures to the results in Figure 12 provides insight1023

into the role of PV system azimuth in distribution-level ohmic losses reduction. We see that1024

southwest facing systems provide greater loss reduction value than do southeast or south1025
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Figure 26: Total Expenditures vs. φ: Flat and RTP-CCC Tariffs
PV Size Sensitivity

κ: Annual Consumption PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution
Case.

facing systems. The logic follows the logic outlined above for the network capacity cost1026

reductions. Residential demand peaks in the afternoon, so reducing afternoon flows reduces1027

losses to a greater degree than reducing flows at other times of the day.1028

6.2.4 Sensitivities to the number of critical peak hours1029

The last key sensitivity is the number of critical peak hours that are assumed to drive1030

distribution network costs. In Section 2.3, We calculate the network cost impact of a marginal1031

kWh of consumption or production, assuming that the top 200 half-hourly periods of1032

demand drive distribution system capacity costs. Today, distribution systems are typically1033

sized to meet demand in the single highest demand hour, plus some margin. Should network1034

costs be considered marginal according to the single peak demand hour? Networks must also1035

be able to operate in all hours—should network costs be considered to be marginal across1036

all hours of demand? The answer to these questions is outside the scope of this dissertation.1037
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Figure 27: Estimation of network capacity value of distributed solar PV
Azimuth Sensitivity

κ: Peak Demand PV Case. Azimuth: 135. Adoption Probabilities: 2016 Distribution Case.

Nonetheless, this Section highlights the impact of changing the assumed number of coincident1038

peak hours that drive distribution network costs.1039

Figures 31 and 32 show the distribution of network capacity cost reduction values of rooftop1040

PV assuming that distribution network costs are marginal across the top 100 half-hourly1041

periods (50 hours) and 400 half-hourly periods (200 hours) respectively. For context, the1042

New York Department of Public Service compensates distributed solar PV units for potential1043

distribution network cost reductions based on their production during roughly the top 2401044

hours of peak demand throughout the year (See New York Department of Public Service1045

(2019)). Comparing with Figure 10 provides interesting insight into the impact of increasing1046

the number of coincident peak hours. We see that, in this case study, increasing the number1047

of peak demand hours in which network costs are considered to be marginal slightly increases1048

the average network capacity cost reduction impact of rooftop solar PV. Likewise, decreasing1049

the number of peak demand hours slightly decreases the cost reduction impact. While the1050

impacts are relatively limited, they are noteworthy.1051

54



Figure 28: Estimation of network capacity value of distributed solar PV
Azimuth Sensitivity

κ: Peak Demand PV Case. Azimuth: 225. Adoption Probabilities: 2016 Distribution Case.
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Table 3: Demographic characteristics of the ComEd Service territory and the data used in
this study

Demographic variable ComEd Service Territory Customer Sample

In
co

m
e

Less than $15,000 10.49% 13.72%
$15,000 - $24,999 8.43% 10.33%
$25,000 - $34,999 9.25% 9.35%
$35,000 - $49,999 14.36% 12.37%
$50,000 - $74,999 20.06% 16.73%
$75,000 - $99,999 13.89% 11.83%

$100,000 - $124,999 9.08% 8.36%
$125,000 - $149,999 5.29% 5.20%
More than $150,000 9.15% 12.11%

A
ge

0-17 25.37% 22.82%
18-24 9.41% 9.79%
25-64 53.52% 54.97%
65+ 11.7% 12.42%

R
ac

e

White alone 65.05% 55.91%
Black or African Amer. alone 16.91% 23.19%

Amer. Indian & Alaska native alone 0.33% 0.30%
Asian alone 5.43% 6.82%

Native Hawaiian & other Pac. Isl. alone 0.06% 0.04%
Other racial designations 12.22% 13.74%

E
d
u
ca

ti
on

al
at

ta
in

m
en

t Less than 9th Grade 6.89% 8.32%
Some High School, no diploma 7.62% 7.45%

High School Graduate (or GED) 25.44% 23.94%
Some College, no degree 20.20% 19.07%

Associate Degree 6.69% 6.36%
Bachelor’s Degree 20.43% 21.22%
Master’s Degree 9.22% 9.88%

Professional School Degree 2.39% 2.47%
Doctorate Degree 1.12% 1.29%

E
m

p
lo

y.

Civilian employed 61.73% 60.00%
Civilian unemployed 6.41% 6.39%

Armed forces 0.16% 0.02%
Not in labor force 31.70% 33.59%

Note: 2011 demographic data for the ComEd service territory used Commonwealth Edison (2011).

Table 4: Number of single-family homes by income quintile

1st Quintile 2nd Quintile 3rd Quintile 4th Quintile 5th Quintile Total

8,076 13,885 12,831 12,799 11,751 59,342
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Table 5: Income distribution of PV adopters under the three adoption cases studied

Income Quintiles 2016 Distribution 2008 to 2016 Trend 2000 to 2016 Trend

0 to 20th Percentile 7.9% 11.4% 12.9%
20 to 40th Percentile 13.1% 23.2% 8.4%
40 to 60th Percentile 25.1% 21.8% 28.7%
60 to 80th Percentile 28.9% 21.8% 32.4%
80 to 100th Percentile 25.0% 21.8% 17.6%

Table 6: PV Production Simulation Parameters

Parameter Value

System Type Fixed Tilt
Azimuth 135, 180, or 225

Tilt 41.9
DC-to-AC Derating 1.3

System Losses 14%
Inverter Losses 4%

Temperature Coefficient -0.004
Albedo 0.2
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Figure 29: Estimation of cost impact distribution loss avoidance value of distributed solar
PV
Azimuth Sensitivity

κ: Peak Demand PV Case. Azimuth: 135. Adoption Probabilities: 2016 Distribution Case.
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Figure 30: Estimation of cost impact distribution loss avoidance value of distributed solar
PV
Azimuth Sensitivity

κ: Peak Demand PV Case. Azimuth: 225. Adoption Probabilities: 2016 Distribution Case.
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Figure 31: Estimation of network capacity value of distributed solar PV
Coincident Peak Sensitivity

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case. 100
Coincident Peak Half-Hourly Periods.
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Figure 32: Estimation of network capacity value of distributed solar PV
Coincident Peak Sensitivity

κ: Peak Demand PV Case. Azimuth: 180. Adoption Probabilities: 2016 Distribution Case. 400
Coincident Peak Half-Hourly Periods.
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