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ABSTRACT 

Power systems with high penetrations of solar generation need to replace solar 

output when it falls rapidly in the late afternoon – the duck curve problem.  

Storage is a carbon-free solution to this problem.  This essay considers investment 

in generation and storage to minimize expected cost in a Boiteux-Turvey-style 

model of an electric power system with alternating daytime periods, with solar 

generation, and nighttime periods, without it. In the most interesting cases, if 

energy market prices are uncapped, all expected cost minima are long-run 

competitive equilibria, and the long-run equilibrium value of storage capacity 

minimizes expected system cost conditional on generation capacities.  
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1. INTRODUCTION 

In 2008, modelers at the National Renewable Energy Laboratory predicted, correctly, that 

increased penetration of residential photovoltaic generation would lead to the regular appearance 

of hourly patterns of total and net generation in the area served by the California Independent 

System Operator (CAISO)  like the pattern shown in Figure 1 (Denholm et al 2008).2  A few 

years later, the hourly pattern of grid generation net of wind and (especially) solar shown there 

was christened “the duck curve”.  As solar penetration has increased, the duck’s back in mid-day 

has deepened, and a greater increase in output from other sources has been required in late 

afternoons, when solar generation drops off and residential load increases (in what can be 

described as the duck’s neck).  The traditional solution to this problem would be to build and use 

more gas turbines or combined cycle plants that can increase output rapidly. 

 However, building more fossil-fueled generators is inconsistent with the goal in 

California and elsewhere of reducing carbon dioxide emissions.  As the costs of storage, 

particularly lithium-ion battery storage, have declined, storage has emerged as a potentially 

attractive, carbon-free alternative way of offsetting diurnal declines in solar generation (Patel 

(2018)).  And, since the promulgation of statutory requirements in 2010, in part to facilitate the 

integration of solar and other variable renewable generation,3 the California Public Utilities 

Commission has been requiring load-serving entities to procure storage (Petlin et al 2018, 

California Public Utilities Commission n.d.).  Storage targets have also recently been established 

in Massachusetts, Nevada, New Jersey, New York, and Oregon, and they are under consideration 

in other states.   

 This state-level reliance on mandates contrasts with an apparent preference at the federal 

level to rely on competition to drive investment in storage facilities. Figure 2 shows the average 

hourly day-ahead locational marginal spot prices (LMP) in the CAISO in 2010, 2015, 2016, and 

                                                
2 Figure 1 is from Joskow (2019), p. 314, used by permission of Oxford University Press. 
3 Storage can also perform other functions in electric power systems. Depending on the technology employed, 
storage facilities can provide frequency regulation, deferral of wires investment, and reducing the cost of spinning 
reserves.  For discussions, see Giuletti et al (2018) and U.S. Government Accountability Office (2018), and for a 
worked example of a storage project that could perform multiple functions, see Sidhu et al (2018).  The focus here is 
exclusively on the use of storage for energy arbitrage to solve the duck curve problem and related problems posed 
by the variability of renewable energy resources. 
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2017, divided by the annual averages of those prices (to control for changes in fuel prices).4  As 

solar penetration has increased, intra-day price differences have also increased.  The pattern in 

Figure 2 suggests that with sufficient solar penetration, competitive storage providers could find 

it profitable to buy at mid-day when prices are low and sell a few hours later as solar generation 

begins to drop off and prices become high, thus mitigating or perhaps solving the duck curve 

problem. The U.S. Federal Regulatory Commission (2018) has recently issued Order 841, which 

is intended to open wholesale energy markets (and other wholesale markets) to merchant storage 

providers.5  Similarly, The European Union’s Clean Energy Package, most recently modified in 

2019, calls for competitive supply of storage (Glowacki 2020) and, in contrast to California’s 

mandate, restricts ownership by distribution system operators.  In both the US and the EU, 

efforts are ongoing to reach agreement on exactly how to define markets and establish tariffs to 

ensure that storage providers have access to wholesale markets on appropriate terms.6 

 The FERC and EU policies rest on the presumption that energy markets can provide at 

least approximately optimal incentives for competitive investment in storage as well as 

generation.7  This essay explores the validity of this presumption in the context of the duck curve 

by investigating the properties of a Boiteux (1960, 1964)-Turvey (1968)-style model of an 

electric power system augmented with the addition of storage.8  Models in this tradition, and the 

model developed here, assume constant returns to scale, stochastic and (generally) inelastic 

demand, and multiple dispatchable generation technologies without significant startup costs or 

minimum generation levels.  If shortages occur, the system is assumed not to collapse, and price 

is assumed to rise to the value of lost load.9  

                                                
4 Figure 2 is from Joskow (2019), p. 314, used by permission of Oxford University Press. 
5 In addition, at the U.S. federal level, storage facilities that are charged only by solar generators are eligible for a 
30% investment tax credit.   
6 See, e.g., https://www.dwt.com/blogs/energy--environmental-law-blog/2020/06/federal-energy-storage-regulatory-
activity  
7 A number of studies have investigated the profitability of energy arbitrage under various cost assumptions and 
observed price trajectories; see, e.g. Salles et al (2017) and Giuletti et al (2018).  The usual finding is that arbitrage 
profits do not cover the capital costs of storage facilities under current price patterns.  This finding sheds no light on 
the general optimality of the investment incentives that would be provided by energy markets when storage is 
available and its deployment is profitable at the margin because energy prices are more volatile than at present. 
8 See Dréze (1964) for an elegant exposition of Boiteux’ work, originally written in the early 1950s, and see Joskow 
(1976) for a discussion of closely related later work.  Joskow and Tirole (2007) extend this literature substantially.  
9 See Joskow and Tirole (2007) on this assumption, to which I return in Section 5.  If energy prices are capped 
below the value of lost load, as seems to be the case in many real markets, investment incentives for generation are 
inadequate; see Joskow (2007, 2008) for discussions. “Capacity mechanisms” of various sorts have been added to a 
number of systems in the US and the EU to deal with this “missing money” problem.   
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 There are a number of ways that storage has been added to models of this sort.  In the 

earliest formal treatments of storage in this context of which I am aware, Gravelle (1968) and 

Nguyen (1968) consider two-period – peak and off-peak – models and simply assume that an 

unlimited amount of the quantity being sold can be transferred between adjacent periods at a 

constant per-unit cost. Several authors, including Steffen and Weber (2013) and Korpås and 

Botterud (2020) have added storage to timeless Boiteux-Turvey-style models by assuming that 

power can be purchased whenever the price of energy is low and resold whenever the price is 

high.  This amounts to assuming that energy storage capacity is effectively infinite, since low-

price and high-price periods may be far apart in time.  Other authors, including Crampes and 

Trochet (2019), Brown and Reichenberg (2020) and Junge et al (2020) have introduced time 

explicitly but assumed perfect foresight.  While these models yield a number of general results 

regarding investment in and operation of storage facilities under competition, the perfect 

foresight assumption is strong and eliminates the precautionary demand for storage.  Relaxing 

that assumption, however, requires explicitly modeling the relevant stochastic processes, as 

demonstrated by Geske and Green (2019).  This limits the generality of results that can be 

obtained. In perhaps the model closest to the one presented here, Helm and Mier (2018) consider 

a dynamic model with a constant demand curve and non-stochastic renewable output that follows 

a regular cyclic trajectory.   

 To focus on a (necessarily) simplified version of the duck curve problem, the model 

considered here has alternating periods of two types, labeled daytimes and nighttimes, 

corresponding roughly to the duck’s back and its neck.  Renewable generation has positive, 

stochastic output only in daytime periods.  Gas generation, which, for simplicity, stands in for 

the whole suite of dispatchable generation technologies, is assumed to be available in both 

daytime and nighttime periods.  Short-term storage can be installed at a constant cost per unit of 

capacity, and storage involves a constant fractional round-trip loss of energy.10  Demand in both 

                                                
10 This simple description of storage costs is reasonable for battery storage of a few hours duration with negligible 
self-discharge and negligible variable operating and maintenance costs.  In the most general case, seven parameters 
are necessary to describe storage costs, even under constant returns to scale (Junge et al 2020). 
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days and nights is stochastic, constant within periods, and perfectly inelastic.11  Section 2 

presents these assumptions in more detail and introduces the notation used in what follows. 

 Under constant returns, competitive generators’ operating rules are simple: produce if and 

only if market price of energy is greater than or equal to marginal cost.  In general, optimal 

charging or discharging of storage under competition depends on the current energy market 

price, the amount of energy in storage, and expectations regarding future energy prices. In 

general, it does not seem possible describe the behavior of competitive storage suppliers when 

storage is not fully discharged in each nighttime period without additional assumptions or (per 

Geske and Green (2019)) resorting to numerical methods.  In the context of the duck curve, 

however, at least in the near term, imposing the restriction that storage is fully discharged in each 

nighttime seems reasonable.  Doing so leads to three possible regimes relating the marginal cost 

of gas generation to expected nighttime prices, and Section 3 derives the three corresponding 

competitive operating rules that storage suppliers would follow. Section 3 also presents a 

sufficient consistency condition for each rule: if that condition holds and if competitive storage 

suppliers follow the corresponding operating rule, they will in fact find it optimal to sell all 

stored energy each nighttime.  

 Section 4 considers minimization of expected total cost conditional on the algebraically 

simplest competitive operating rule derived in Section 3.  Parallel analyses under the other two 

regimes are summarized in Appendices A and B.  Section 5 discusses some implications of the 

results of this analysis. 

2. ASSUMPTIONS AND NOTATION 

The daytime and nighttime periods in each day are assumed to be of equal length for 

convenience, and the probability distributions governing demand within daytime and nighttime 

periods and the output of renewable generation are assumed to be independent. Independence 

rules out weather-induced correlations, among other things, but it is not clear how to relax this 

strong assumption and maintain tractability. There are four technologies with constant returns to 

scale.  Their capacities are initially assumed to be determined by a benevolent social planner 

                                                
11 Joskow and Tirole (2007) and a number of other papers assume that at least some demand is price-sensitive and 
consider welfare maximization rather than cost minimization.  I assume perfectly inelastic demand here for the sake 
of simplicity 
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interested in minimizing expected total cost.  After the implications of that assumption have been 

explored, we consider whether a continuum of risk-neutral, perfectly competitive firms would 

provide the same capacities in long-run equilibrium: 

Gas stands in for all dispatchable fossil and nuclear technologies, has capacity G, per-day 

unit capacity cost CG, and per-MWh operating cost c. 

Renewables have capacity R, per-day unit capacity cost CR, and zero operating cost.  

Maximum renewable output is zero during the night and is equal to θR MWh during the 

day, where θ is a random variable with smooth distribution function H(θ) on [θ,1], with θ 

> 0, and density function h(θ).12 It is assumed that renewable generation can be costlessly 

curtailed whenever daytime demand is less than available renewable supply.  

Scarcity operates when load exceeds capacity and there is lost load. Scarcity involves 

zero capital cost and has per-MWh variable cost v, the value of lost load.  The probability 

of scarcity is assumed to be positive in both periods.  (It must be positive in at least one 

period for gas to recover its capital cost under competition.13) 

Storage has capacity S, per-day unit capacity cost CS, and round-trip efficiency η < 1.  

This paper focuses on the empirically interesting case (for at least some time to come) S < 

θR.  The (stochastic) amount of energy in storage at the end of a daytime period is s.  

Efficiency requires that the capital costs all include appropriately discounted disposal costs, 

including environmental impact costs, and the operating cost of dispatchable generation must 

include the associated environmental costs.  As an accounting convention, the loss of energy due 

to storage occurs when storage is discharged, not when it is charged.   

 Cost parameters are assumed to satisfy the following inequalities: 

(2.1)      

The first two of these are familiar: gas has lower capital cost than renewables, and the value of 

lost load exceeds the incremental cost of gas generation.  The third is necessary for gas to be 

economical.  Gas capacity is necessary to meet demand at night when renewable generation is 

                                                
12 This follows Llobet and Padilla (2018) and essentially assumes perfect correlation among the outputs of 
renewable generating facilities.  Solar generation is obviously zero at night; the assumption of a positive minimum 
daytime capacity factor seems reasonable. 
13 For clear discussions, see Joskow (2007, 2008). 

, , .G R RC C c v and C c< < <
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not available, so for it to be efficient for any renewable capacity to be installed and used during 

the day, the total per-MWh cost of renewable generation, CR, must be less than the incremental 

cost of gas generation from existing capacity, c.  A high value of c is most naturally interpreted 

as reflecting a substantial price of carbon emissions. 

 The two periods in each day are as follows: 

Daytime load before storage purchases (i.e., final demand), LD, is distributed according 

to smooth distribution function FD(L) on [0,∞] with density fD(L).     

Nighttime load before storage sales (i.e., final demand), LN, is distributed according to 

smooth distribution function FN(X) on [0,∞], with density fN(X).   

I assume that CS is low enough, η is high enough, and nighttime load is on average high enough 

relative to daytime load that some energy arbitrage via storage is economic, and I thus 

concentrate on internal minima of expected system cost. 

 The values of R, G, and S are initially assumed chosen by a benevolent planner to 

minimize expected system cost, including the cost of lost load, conditional on competitive 

behavior by the holders of those assets.  At the start of every daytime period, values of LD and θR 

are realized.  Storage suppliers then decide how much energy to carry into the next nighttime, s, 

based on the observed daytime market price of energy, PD, and the expected nighttime price of 

energy,    At the start of every nighttime period, the value of s from the previous daytime is 

revealed, the value of LN is realized, and the actual nighttime price of energy, PN, is determined.  

I first describe minima of expected system cost and then consider their relation to long-run 

competitive equilibria. 

3. COMPETITIVE OPERATING RULES FOR STORAGE 

As noted above, it seems that to make the analysis of storage operations tractable without 

additional restrictive assumptions, we must require that storage be fully discharged during each 

nighttime period, so that each daytime period begins with zero stored energy. 14  Since this model 

                                                
14 Let Γ(s) be the end-of-daytime value of an incremental unit of stored energy when storage contains s MWh, and 
let Δ(y) be the end-of-nighttime value of an incremental unit of stored energy when storage contains y MWh.  If 
storage is fully discharged every nighttime, Γ(s) is just η times the expected nighttime price, exactly as assumed 
below.  Without that assumption, however, Γ(s) would also reflect the fact that under some nighttime conditions, 
discussed in the text, it would more profitable not to discharge fully, but rather to carry some energy into the next 
daytime.  The nighttime decision of competitive storage suppliers involves comparing Δ(y), which would depend on 

.NP
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is an abstract representation of systems, like the CAISO system, in which there is an abundance 

of solar generation during most daytimes and robust demand in the evening when solar output 

falls to zero, this seems the most interesting case.   

 There are two ways competitive storage suppliers could end a nighttime period with 

positive stored energy.  First, they could have begun the period with positive stored energy, s, 

and encountered perfectly inelastic demand, LN, that was less than ηs.  They would then sell LN 

and carry (s-LN/η) into the next daytime.15  The simplest way to rule this out is to assume that the 

minimum nighttime demand exceeds the maximum supply from storage: 

(3.1)      

Since S is endogenous, this is not fully satisfactory.  But the notion of a non-trivial, positive 

minimum nighttime demand is plausible in general and plainly so in the duck curve context. 

  The second way competitive storage suppliers might end a nighttime period with positive 

stored energy could occur if the energy market price were c and gas capacity were not exhausted.  

Depending on expectations regarding daytime prices, they might find it optimal to purchase 

energy at c and carry it into the next daytime. The marginal value of energy purchased to carry 

forward in this fashion is clearly non-increasing, so to rule out this behavior it suffices to rule out 

buying and carrying forward the first marginal unit.  As discussed below, the conditions ruling 

this out, (3.3), (3.4), and (3.6), are specific to each of the three possible operating regimes.  

Unfortunately, like (3.1), these conditions also involve endogenous variables.  

  If full nighttime discharge is optimal, a competitive supplier of storage would only add to 

charge in the daytime if the marginal cost of doing so did not exceed the expected nighttime 

revenue per unit stored, which is η times the expected nighttime price.  Because nighttime 

demand is perfectly inelastic, the expected nighttime price is just the expected marginal cost of 

supply: 

(3.2a)    

                                                
expected daytime conditions, with the marginal nighttime price of energy. In this general case, it is not apparent how 
to relate the two value functions involved to the primitives of the model, or even to each other. 
15 Recall the convention that energy losses occur when storage is discharged, not when it is charged. 

( ) 0 , .N N NF L for L X where X Sh= £ >

[ ]( , ) ( ) 1 ( ) .N N NP G s cF G s v F G sh h= + + - +
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By assumption (3.1), stored energy alone is never sufficient to meet demand.  With probability 

FN(G+ηs), stored energy plus gas is sufficient, and there is no shortage.  Because increases in 

gad capacity and stored energy shift the nighttime supply curve to the right, the expected price 

falls with G and s: 

(3.2b)   

In what follows, dependence of  on G is generally suppressed to reduce notational clutter. 

 If all stored energy is to be sold at night regardless of price, a risk-neutral competitive 

storage supplier would store incremental energy during the day if the per-unit cost of doing so 

exceeded  From (3.2a), is always between c and v, the two possible nighttime 

prices when there are no sales from storage, but η times this quantity may be above or below c.  

There are thus three possible daytime regimes, listed in order of increasing analytical 

complexity: 

   1.  

   2.  

   3.  

 It follows from the discussion above that the daytime competitive demand curve for 

energy from final demand and competitive storage suppliers is vertical at LD (no demand from 

storage) for prices above declines to (LD+S) for prices between and  and 

is vertical at (LD+S) for lower prices (storage completely filled).  This shape is illustrated in 

Figure 3, where PD is the daytime energy price, and QD is the corresponding quantity demanded.  

Using this demand curve, we can now describe the daytime market and competitive 

determination of s under each of these regimes.16 

 Regime 1:  Under this regime and the assumption of full nighttime 

discharge, competitive storage suppliers will charge as much as possible as long as the daytime 

                                                
16Each operating rule developed below is optimal for a particular regime, but the operating rule followed by storage 
suppliers will affect the expected nighttime price function and could in some cases thereby alter the regime. It is not 
clear how to rule out this sort of inconsistency as a general matter.   
  

( , ) [ ( , ) ] ( ) ( ) 0.N N NP G s s P G s G v c f G sh h h¶ ¶ = ¶ ¶ = - - + <

NP

(0).NPh (0)NP

( ) (0) .N NP S P ch h< <

( ) (0).N Nc P S Ph h< <

( ) (0).N NP S c Ph h< <

(0),NPh (0)NPh ( ),NP Sh

( ) (0) .N NP S P ch h< <
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market price is less than c, so only zero-marginal-cost output from renewables is stored.   

Competitive behavior determines the demand from storage, s, gas output, marginal operating 

cost, and the market price of energy, PD, as functions of the relationship between final demand, 

LD, renewable generation, and the capacities of gas generation and storage.  Maintaining the 

assumption S < θR, this regime implies a competitive operating rule with four daytime cases: 

       Case           s       Gas Output      Marginal Cost              PD 

       (a)      LD ≤ θR–S      S              0         0            0 

       (b)   θR–S ≤ LD ≤ θR θR–LD    0         0               

       (c)   θR ≤ LD ≤ θR+G           0            LD–θR                 c             c 

       (d)      θR+G ≤ LD     0              G      v             v 

In case (a) there is sufficient renewable output both to satisfy final demand and to charge storage 

to capacity without requiring gas generation.  In case (b), charging is curtailed as necessary to 

avoid calling on gas generation and driving price above  Marginal operating cost remains 

at zero, but the market price of energy is bid up by competitive storage to the expected value of 

additional nighttime sales, as illustrated in Figure 4.  In case (c) final demand is high enough that 

gas is necessarily on the margin, and both the marginal operating cost and the energy price are c.  

No charging occurs.  Case (d) involves shortage, and the system marginal cost and price are the 

value of lost load, so there is, again, no charging.   

 Given the operating rule just described, suppose a competitive storage supplier considers 

storing a unit of energy at night at a cost of c for sale the next day.  For this to be unprofitable, c 

must exceed η times the expected value of PD the next day. Using the upper bound on the energy 

price in case (b), c, a sufficient condition for storage at night at a cost of c to be unprofitable is  

(3.3)     

If (3.1) and (3.3) are satisfied, storage will be empty at the start of every daytime period under 

competition, as assumed.  Since η < 1, (3.3) will be satisfied unless the probability of a daytime 

shortage, the expected value of [1–FD(θR+G)], is sufficiently high. 

 Regime 2:  There are, again, four cases under this configuration of 

costs and expected prices:  

( )N DP R Lh q -

(0).NPh

[ ] [ ]{ }
1

( ) ( ) 1 ( ) ( ) .D D Dc F R G F R S v F R G h d c
q

h q q q q q+ - - + - + <ò

( ) (0).N Nc P S Ph h< <
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    Case     s            Gas Output       Marginal Cost        PD 

     (a)       LD ≤ θR–S                 S           0      0  0 

     (b)   θR–S ≤ LD≤ θR+G–S      S       LD–(θR–S)              c  c   

     (c)   θR+G–S ≤LD≤ θR+G           θR+G–LD         G     c    

     (d)       θR+G ≤ LD                   0             G    v              v 

In cases (a) and (b), there is sufficient capacity both to satisfy final demand and to charge storage 

fully without driving the energy price above c.  The marginal generating cost is zero in case (a), 

and in case (b) it is c because gas is on the margin.  In case (c), storage cannot be fully charged 

without driving the energy price to v.  As in case (b) under regime 1, competitive storage 

suppliers bid the energy price above marginal cost, c, as illustrated in Figure 5.  Finally, in case 

(d), there is an unavoidable shortage, marginal cost and the energy price are the value of lost 

load, v, and storage demand is reduced to zero.   

 Using the upper bound on price in case (c), v, the reasoning that let to condition (3.3) 

yields a sufficient condition that rules out the profitability of purchasing energy at night at a price 

of c and reselling the next day under regime 2: 

(3.4)     

As before, the probability of a daytime shortage must not be too high.   

 Regime 3:  The competitive operating rule implied by this regime is 

a bit more complicated than those under Regimes 1 and 2: 

    Case                s             Gas Output     Marginal Cost              PD 

     (a)       LD ≤ θR–S                         S           0      0      0 

     (b)   θR–S ≤ LD≤ θR           θR–LD           0                        0              

     (c)   θR ≤LD≤θR+G                  LD–(θR– )             c                      

     (d)   θR+G ≤LD≤ θR+G      θR+G–LD             G             c                

     (e)       θR+G ≤ LD                         0            G   v         v 

Here is implicitly defined by 

( )N DP R G Lh q + -

[ ] [ ]{ }
1

( ) ( ) 1 ( ) ( ) .D D Dc F R G S F R S v F R G S h d c
q

h q q q q q+ - - - + - + - <ò

( ) (0).N NP S c Ph h< <

s-! ( )N DP R Lh q -

s-! s-! s! s! ( )NP sh !

s-! ( )N DP R G Lh q + -

s!
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(3.5a)        

Increases in G reduce the expected nighttime price and thus reduce the amount of energy it is 

profitable to store for nighttime sale when its cost is c: 

(3.5b)       

This follows from equation (3.2b). 

 In case (a), final demand plus S is less than renewable output, so storage is fully charged, 

and the energy price is zero.  In case (b), as in case (b) under regime 1, total demand at a price of 

zero, (LD+S), exceeds renewable output.  Marginal operating cost remains at zero, but the market 

price of energy is bid up by competitive storage suppliers to the expected value of incremental 

nighttime sales.  This resembles the situation illustrated in Figure 4, except that  exceeds 

c here.  In case (c), illustrated by Figure 6, gas is on the margin, and storage is limited to < S 

because additional storage would have negative expected profit.  In case (d), which resembles 

case (c) under Rule 2, which is illustrated by Figure 5, marginal operating cost is c, but price is 

driven above c by competition among storage suppliers.  Finally, in case (e), final demand 

exceeds renewable output plus gas capacity, there is a shortage, and storage is not charged.  Note 

that storage capacity is fully utilized only in case (a). 

 Using upper bounds on energy prices in cases (b) and (d) and the reasoning that led to 

conditions (3.3) and (3.4), a sufficient condition for purchasing energy at night at a cost of c and 

storing it for resale the next day to be unprofitable is  

(3.6)    

Because this condition employs two upper bounds on prices, it is likely considerably stronger 

than necessary. 

4. OPTIMA AND EQUILIBRIA UNDER REGIME 1 

This section analyzes minimization of expected total cost conditional on competitive storage 

operation under Regime 1.  We first evaluate expected system cost as a function of R, G, and S 

( , ).Nc P G sh= !

( , ) 1 0.s G c
G h

¶
= - <

¶

!

(0)NPh

s!

{ }
1

( ) ( ) 1 ( ) ( ) .D D Dc F R G s F R S v F R G s h d c
q

h q q q q qé ù é ù+ - - - + - + - <ë û ë ûò ! !
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and then compare the conditions for minimization of that function with conditions for long-run 

competitive equilibrium. 

 This analysis is algebraically simpler than but parallel to the analyses conditional on 

Regimes 2 and 3, which are sketched in the Appendix.  Equation numbering in the Appendix 

tracks the numbering in this section to facilitate comparisons.  The results in the Appendix are 

compared with those obtained here in Section 5. 

 It follows from the four cases under regime 1 that the expected amount of energy in 

storage at the end of a daytime (and the start of a nighttime) is 

(4.1a)     

Differentiation shows that a small unit increase in R increases the expected value of s by less 

than expected generation per unit of renewable capacity: 

(4.1b)    

In this regime, an increase in R only increases charging when LD is between θR and (θR-S).  

Similarly, increasing storage capacity by a small unit increases the expected amount stored by 

less than one unit: 

(4.1c).     

An increase in S has no impact on charging for final demand above (θR–S), but there is an 

increase in the amount stored at lower levels of final demand, when storage is charged fully. 

 It follows from the discussion of regime 1 above that expected daytime operating cost is 

given by 

(4.2a)    

1

( ) ( ) ( ) ( ) ( ) .
R
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R S
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q

q q
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-

ì ü
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î þ
ò ò
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1
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Expected daytime operating cost is independent of S under this regime because storage demand 

never causes gas to turn on or induces a shortage.  Increases in either R or G reduce expected 

daytime operating cost: 

(4.2b)    

(4.2c)      

 To get expected nighttime operating cost, it is simplest first to evaluate expected cost 

conditional on s and then take the expectation over s.  If ηs MWh are sold from storage at night, 

expected nighttime operating cost is given by 

(4.3a)    

When nighttime final demand, LN, is between ηs and ηs+G, it can be met by gas generation and 

sales from storage.  Higher levels of demand lead to shortages, gas generation runs at capacity, 

and the system marginal cost rises to the value of lost load, v.17 

 Differentiating (4.3a) yields the impacts of increasing G and s on conditional expected 

cost: 

(4.3b)    

(4.3c)    

The right-hand side of (4.3b) is minus the expected nighttime net earnings of a unit of gas 

capacity, conditional on G and s.  The right-hand-side of (4.3c) is minus η times the expected 

nighttime marginal cost, again conditional on G and s.  Since nighttime demand is perfectly 

inelastic, it is also minus η times the (conditional) expected nighttime market price of energy, 

which is the net revenue from a unit of charge in storage at the start of a nighttime period. 

                                                
17 Recall that by assumption (3.1), LN is never less than ηs. 
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 Taking the expectation of ω over s, using the description of competitive operating 

behavior under Regime 1 in Section 3, yields unconditional expected nighttime operating cost: 

(4.4a)         

 Differentiating this expression shows that increases in renewables capacity reduce 

expected nighttime operating cost by increasing expected storage:  

(4.4b)     

An increase in renewable capacity increases the expected end-of-daytime value of s, per equation 

(4.1b), thus lowering expected nighttime cost by increasing the expected nighttime supply from 

storage. The second equality in (4.4b) follows from (4.3c).   

   Increases in gas capacity reduce expected nighttime operating costs by reducing the 

probability of a nighttime shortage: 

(4.4c)  

The expression in in curly brackets in the second line is the expected probability, conditional on 

θ, of a nighttime shortage, the probability that LN exceeds the supply from storage plus the 

supply from gas generation operating at capacity.  To see this, note that such a shortage can arise 

in three possible ways.  The first term in that expression reflects the fact that with probability 

FD(θR–S), storage is fully charged, and the conditional probability of a nighttime shortage is then 
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FD(θR)], daytime load exceeds θR so that gas must be used, the marginal operating cost is c, no 

charging occurs, and s=0.  Conditional on no supply from storage, the probability of a nighttime 

shortage is just [1–FN(G)].  Intermediate values of LD, which imply 0 ≤ s=θR–LD ≤ S from the 

discussion of competitive operation under regime 1, have density fD(LD) and conditional night-

time shortage probability {1–FN[G+η(θR–L)]}.  

 Finally, increases in storage capacity reduce expected nighttime operating cost by 

increasing expected nighttime sales from storage: 

(4.4d)       

From (4.1c), the expected increase in s from a small unit increase in S is the expected value of 

FD(θR–S), and that increase occurs when the daytime load is such that generation is being fully 

charged.  Since storage is only charged when the marginal cost of electricity is zero, there is no 

associated daytime cost increase.  The reduction in expected nighttime operating cost is just 

expected nighttime marginal cost when storage is fully charged, , times the increase in 

expected energy sales from storage, the expectation of ηFD(θR–S).   

 Using (4.2a) and (4.4a), expected system total capacity plus operating cost as a function 

of R, G, and S can be written as  

(4.5)          

Drawing on the analyses of Λ and Ω above, the first-order conditions for minimizing this 

quantity are given by: 
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 Condition (4.6a) reflects the fact that renewable suppliers earn revenue whenever the 

daytime market price of energy is positive. With probability [FD(θR+G)-F(θR)], that price is c, 

and with probability [1-F(θR+G)], that price is v.  The discussion of regime 1 in Section 3 

establishes that when LD is between θR–S and θR, the market price of energy is  

The integrand on the right of (4.5b) is thus the expectation of output per unit of renewable 

capacity, θ, times the expectation (over daytime and nighttime final demands) of revenue per unit 

of output, conditional on θ.  That product is expected revenue per unit of capacity conditional on 

θ, and the integral is the unconditional expected revenue per unit of renewable capacity.  

Condition (4.6a) thus says that the cost of a unit of renewable capacity must equal the 

corresponding expected per-unit operating revenue.  This necessary condition for R to minimize 

total system cost is a zero-expected-profit condition that must hold in long-run competitive 

equilibrium. 

 Gas generators earn revenue in excess of marginal operating cost in both daytime and 

nighttime only when conditions of shortage prevail.  The integrand in (4.6b) is just per-unit net 

revenues conditional on shortage, times the sum of the daytime and nighttime probabilities of 

shortage conditions, conditional on θ. The integral is thus the unconditional sum of the two 

shortage probabilities. Condition (4.6b) requires that capital cost equal expected net operating 

revenue, another zero-expected-profit condition for minimization of total system cost that must 

hold in long-run competitive equilibrium. 

 Condition (4.6c) is also a zero-expected-profit condition.  When LD is below (θR-S) 

storage is fully charged.  The integral in (4.5d) is the unconditional probability of that event, and 

it is multiplied by expected nighttime revenue per unit of capacity when storage is fully charged.  

Storage is also partially charged when LD is between (θR-S) and θR.  But the price paid for stored 

energy in that case is exactly equal to expected revenue of subsequent nighttime sales, so there is 

no effect on expected profit  

 Conditions (4.6) thus establish that all minima of expected total cost can be supported as 

equilibria of markets with continua of infinitesimal, price-taking suppliers of generation and 

storage.  To prove that all competitive equilibria are minima of expected total cost, it would be 

necessary to show that the Hessian corresponding to conditions (4.6).  I have been unable to do 

this, but I have been able to sign the diagonal elements of that matrix: 

( , ).NP G R Lh q -
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(4.7a)      

 (4.7b)     

 (4.7c)     

The first term on the right in (4.7a) is positive by the definition of Regime 1, and the integral in 

the last term is negative by (3.2b).   It follows from equations (4.7) that conditional on the values 

of any two of the three stock variables, R, G, and S, the long-run competitive equilibrium value 

of the third minimizes expected total cost.   

5. CONCLUDING REMARKS 
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otherwise well-behaved and that the diagonal elements of the relevant Hessian are always 

positive, if such inefficient equilibria actually exist, it seems likely that they do so only in odd 

and unusual cases. 

 If energy prices are not capped below the value of lost load, Boiteux (1960, 1964)-Turvey 

(1968)-style models indicate that revenue from competition in energy markets leads to the 

economically efficient supply of generation capacity.  The results here provide the same sort of 

support for reliance on the competitive supply of storage, at least in the context of the duck curve 

problem.  These results thus provide support for the preference in the EU and at the federal level 

in the US for storage to be determined by market competition. 

 In most energy markets in the US and the EU, however, prices are capped below 

reasonable estimates of the value of lost load,18 and those caps are occasionally binding.  

Boiteux-Turvey-style models then imply that revenues from sales in energy markets will provide 

inadequate incentives for investment in generation.19 And in most electricity markets in the US 

and the EU, “capacity mechanisms” have been developed to supplement energy market revenues.  

These mechanisms typically involve a determination by a regulator or system operator of the 

level of generation capacity necessary for an acceptable level of reliability along with a capacity 

market or other mechanism for compensating suppliers of that capacity.   

 Just as caps on wholesale energy prices reduce incentives for investment in generation, it 

follows from the Boiteux-Turvey-style analysis here that caps on wholesale energy prices will 

lead to inadequate incentives for investment in storage for energy arbitrage. It seems unlikely 

that this theoretical finding is what has motivated the US states that have adopted quantitative 

storage targets, but it does seem likely that some analog to “capacity mechanisms” may come to 

be felt to be necessary to supplement energy arbitrage revenues to increase the supply of storage.  

“Capacity mechanisms” use reliability to determine the appropriate level of generation capacity; 

it is not clear how the appropriate level of storage capacity of various sorts would sensibly be 

determined. 

  

                                                
18 The only exception of which I am aware is the ERCOT market, which serves most of the state of Texas. 
19 See Joskow (2007, 2008), and Joskow and Tirole (2007). 
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Appendix A: Optima and Equilibria in Regime 2 

It follows from the discussion of Regime 2 in Section 3 that expected charge at the end of a 

daytime period is given by 

(A.1a)     

Increases in either R or G increase the expected value of Z: 

(A.1b)    

(A.1c)    

(A.1d)     

 Expected daytime operating cost follows from competitive storage behavior in Regime 2: 

(A.2a)   

In contrast to Regime 1, daytime operating cost here depends on S because demand from storage 

may cause gas to turn on.  The derivatives of the daytime cost function are the following: 
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 If ηs MWh are sold from storage, expected nighttime operating cost is given by equation 

(4.3a) in the text: 

(A.3)    

Equations (4.3b) and (4.3c) are thus also valid under Regime 2.  

 Taking the expectation over s from the description of competitive behavior under Regime 

2 in Section 3 yields unconditional expected nighttime operating cost: 

(A.4a)   

The derivatives of this function parallel equations (4.4b) – (4.4d) in the text: 

(A.4b)  

(A.4c)  

( ) ( ) ( )

( )

, [ ] 1

[ ( )] .

s G

N N
s

N
s G

G s c L s f L dL cG F G s

v L s G f L dL

h

h

h

w h h

h

+

¥

+

º - + - +é ùë û

+ - +

ò

ò

( )
( ) ( ) ( ) ( )

( ) ( )

1 , ,
, , ( ) .

1 ,0

R G

D D
R G S

D

F R G S G S G R G L f L dL
R G S h d

F R G G

q

q
q

q w w q
q q

q w

+

+ -

ì ü
+ - + + -ï ï

W º í ý
ï ï+ - +é ùë ûî þ

ò
ò

{ }

1

1

( , )/ ( ) ( )

( , )] ( ) ( ) ,

R G

D
R G S

R G
N D

R G S

G R G LR f L dL h d
R

P G R G L f L dL h d

q

qq

q

qq

w q q q

q h q q q

+

+ -

+

+ -

=
¶ + -é ù¶W ¶ òê ú¶ë û

= - + -ò

ò

ò

[ ]1
( , 0)

1 ( )
/

( )

( )

( , )( )
( )

( , ) ( , )

( )[1 ( )] [1 ( )][1 ( )]

[1 ( ( ))] ( )

R G

DR G S

D

D N D N

N D

G
F R G

G
G

f L dL

v c

G SF R G S
G h d

G R G L G R G L
G s

F R G S F G S F R G F G

F G R G L f L dL

q

q
q

q

w
q

wq
q q

w q w q

q h q

h q

+

+ -

¶
+ - +

¶
¶W ¶

+

= - -

¶ì ü+ -ï ï¶ï ï= í ý¶ + - ¶ + -é ùï ï+ê úï ï¶ ¶ë ûî þ
+ - - + + - + -

+ - + + -

ò
ò

1

1

1 1

( )

( ) ( ) ( )

( ) Pr( ) ( ) ( ) ( ) ( ) ,

R G

R G S

R G

N D
R G S

R G

NN D
R G S

h d

P R G L f L dL h d

v c P v h d P R G L f L dL h d

q

q

q

q q

q

q q q

q q

h q q q

q q q h q q q

+

+ -

+

+ -

+

+ -

-

-

ì üï ï
í ý
ï ïî þ

ì ü
+ -í ý

î þ
ì ü

= - - = + -í ý
î þ

ò ò

ò ò

ò ò ò



25 
 

(A.4d)   

Aside from the general substitution of (θR+G) for θR, the main difference between equations 

(A.4) and equations (4.4) in the text is the  integral (A.4c) that does not appear in (4.4c).  That 

term stems from case (c), in which competitive suppliers bid the price of energy above c, thus 

enabling gas generators to more than cover their marginal cost.  (See Figure 5.) 

 Expected total cost is given by equation (4.5a) in the text, modified to reflect the fact that 

S affects daytime operating costs under Regime 2:  

(A.5)          

The first-order conditions for minimizing this quantity are given by  

(A.6a)   

(A.6b)  

(A.6c)   

These are, again, zero-expected-profit conditions.  Condition (A.6a) compares capital cost per 

unit of renewable capacity to expected revenue per incremental unit of capacity when the market 

price is c (in case b), when it is v (in case d), and in case (c) when competition suppliers raises 

the market price above marginal generation cost.   Similarly, condition (A.6b) reflects the fact 

that in case (c) competition among storage suppliers raises the market price above c, so that gas 

suppliers earn positive operating profits.  Finally, condition (A.6c) says that per-unit capital cost 

of storage plus expected incremental daytime charging cost in case (b) must equal expected 

incremental nighttime revenue.  Charging cost in case (a) is zero.  Expected charging cost in case 

(c), which does not appear in (A.6c), is exactly offset by expected nighttime revenues in that 

case, which also do not appear.  
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 As in the case of Regime 1, I have been unable to prove that the Hessian corresponding to 

equations (A.6) is always positive definite.  The diagonal elements of that matrix are the 

following: 

(A.7a)    

(A.7b)    

(A.7c)   

The first and second terms on the right of (A.7a) and the first term on the right of (A.7c) are 

positive by the definition of Regime 2.  Equation (3.2b) implies that  is a decreasing 

function of its second argument.  As under Regime 1, these conditions imply that given values of 

any two of R, G, and S, the competitively determined value of the third variable minimizes 

expected total social cost.   

Appendix B: Optima and Equilibria in Regime 3 

The discussion of Regime 3 in the text implies the following equation for expected end-of-

daytime charge: 
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(B.1a)    

Differentiation yields 

(B.1b)    

(B.1c)    

(B.1d)    

Increasing R shifts the s(LD) curve to the right, and s is increased when LD is in two distinct 

intervals. Increasing G decreases from (3.5b), shifting the curve down for LD between  

and  and shifting it to the right beyond  Thus, in contrast to Regime 1 

(under which  ) and Regime 2 (in which ), here the impact of 

increases in G on s cannot be signed in general.  Increasing S just shifts the s(LD)  curve up to the 

left of    

 Expected daytime operating cost under Regime 3 is given by 

(B.2a)    

Note that S does not affect daytime operating cost under this regime, since changes in S only 

affect charging in case (a), when marginal operating cost is zero.  Differentiation yields 
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(B.2b)      

(B.2c)      

 If ηs MWh are sold from storage, conditional expected nighttime operating cost, ω(G,s), 

is given by equation (4.3a) in the text, as under Regimes 1 and 2: 

(B.3)     

Equations (4.3b) and (4.3c) are accordingly also valid under this regime.  

 Taking the expectation of ω over s, using the characterization of competitive behavior 

under this regime in Section 3, yields the unconditional expectation of nighttime operating costs: 

(B.4a)   

Differentiation of this expression yields 

(B.4b)  

(B.4c)   
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(B.4d)   

 Expected total cost is again given by a slight modification of equation (4.5a) in the text: 

(B.5)   

Differentiation yields the first-order necessary conditions for a minimum of expected total cost 

(B.6a)  

(B.6b)  

(B.6c)   

 These conditions once again imply zero expected profits for each technology. Condition 

(B.6a) compares unit capital cost for renewable generation with the sum of expected revenue per 

unit of capacity in cases (b)-(e).  Similarly, condition (B.6b) compares unit capital cost for gas 

generation with the sum of expected net revenues above variable cost in cases (d) and (e) and in 

nighttime shortage conditions.  (Comparing (B.2c) and (B.4c) reveals that the change in   

induced by a marginal increase in G has equal and opposite effects on expected gas generation 

costs in daytime and nighttime periods.)  Finally, (B.6c) compares unit capital cost of storage 

with the marginal expected revenue from the increased charging in case (a) that a unit increase in 

storage capacity would induce.  As in the other regimes, payments by storage suppliers above 

marginal generation costs, in cases (b) and (d) here, show up as revenues for renewable and gas 

generators but not as costs for storage suppliers, since those payments exactly equal the expected 

nighttime revenue from sales of the incremental stored energy. 
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 As in the cases of Regimes 1 and 2, I have been unable to prove that the Hessian 

corresponding to equations (B.6) is always positive definite.  The diagonal elements of that 

matrix are the following: 

(B.7a)   

(B.7b)    

(B.7c)   

Equations (3.5) were used in the derivation of (B.7a) and (B.7b).  Equation (B.7cc) demonstrates 

that as under Operating Rules 1 and 2, in long-run competitive equilibrium, the value of S 

minimizes expected total cost conditional on the values of R and G. 
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